Abstract:
A temperature controlled multi-channel transmitter optical subassembly (TOSA) may be used in a multi-channel optical transceiver. The multi-channel TOSA generally includes an array of lasers optically coupled to an arrayed waveguide grating (AWG) to combine multiple optical signals at different channel wavelengths. A temperature control system may be used to control the temperature of both the array of lasers and the AWG with the same temperature control device, e.g., a thermoelectric cooler (TEC). The multi-channel optical transceiver may also include a multi-channel receiver optical subassembly (ROSA). The optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
Abstract:
The present disclosure is generally directed to a lens clip that defines at least one mounting surface for coupling to and supporting an array of optical components, e.g., a laser diode and associated components, and an optical lens slot to receive and securely hold an array of optical lenses at a predetermined position relative to the optical components to ensure nominal optical coupling. The optical lens slot includes dimensions that permit insertion of each optical lens into the same and restrict travel along one or more axis. Accordingly, disposing an optical lens within the lens slot ensures correct alignment along at least two axis, e.g., Z and X, with the third axis (e.g., Y) extending parallel along the slot to permit lateral adjustment of each lens.
Abstract:
A mirror device for use in an optical subassembly is disclosed that includes at least one surface with a visible indicator to allow a technician to differentiate a highly-reflective surface from relatively less reflective (e.g., un-coated) surfaces. The mirror device may be formed using known approaches, such as through the deposition of a metallic material on to a surface of the mirror device followed by one or more optional coating layers. Before, or after, forming the highly-reflective surface, a visual indicator may be introduced on to a surface of the mirror device that is opposite the highly-reflective surface. The visual indicator may comprise, for example, random scratches/scoring etched from a wire brush or tool, paint, epoxy, ink, or any other indicator that allows a technician to visually differentiate the portion of the mirror device having the visual indicator from the highly-reflective portion.
Abstract:
Techniques are disclosed for providing relatively short distances between multi-channel transmitter optical subassemblies (TOSAs) and associated transmit connecting circuit in order to reduce losses due to signal propagation delays, also sometimes referred to as signal flight time delays. In an embodiment, a TOSA includes a plurality of laser assemblies disposed along a same sidewall of the TOSA along a longitudinal axis. The TOSA may be disposed within an optical transceiver housing in a transverse orientation, whereby a longitudinal center line of the multi-channel TOSA is substantially perpendicular to the longitudinal axis of the optical transceiver housing. The TOSA may be positioned adjacent an end of the optical transceiver housing having a transmit connecting circuit. Thus each of the plurality of laser assemblies may be positioned at a relatively short distance, e.g., 120 microns or less, away from the transmit connecting circuit.
Abstract:
A multi-channel receiver optical subassembly (ROSA) including at least one sidewall receptacle configured to receive and electrically isolate an adjacent multi-channel transmitter optical subassembly (TOSA) is disclosed. The multi-channel ROSA includes a housing with at least first and second sidewalls, with the first sidewall being opposite the second sidewall and including at least one sidewall opening configured to fixedly attach to photodiode assemblies. The second sidewall includes at least one sidewall receptacle configured to receive at least a portion of an optical component package, such as a transistor outline (TO) can laser package, of an adjacent multi-channel TOSA, and provide electrical isolation between the ROSA housing and the TOSA within an optical transceiver. The sidewall receptacle can include non-conductive material in regions that directly or otherwise come into close proximity with the optical component package of the adjacent TOSA.
Abstract:
A multi-channel receiver optical subassembly (ROSA) such as an arrayed waveguide grating (AWG), with outputs directly optically coupled to respective photodetectors such as photodiodes. In one embodiment, the photodetectors are mounted on a photodetector mounting bar that includes a multiple conductive photodetector pads (PD pads). Each of the PD pads may be configured to receive a photodetector, and the PD pads are electrically isolated from ground such that the photodetectors are floating. The photodetector bar further includes multiple conductive transimpedance amplifier pads (TIA pads). Each of the TIA pads may be configured to receive a TIA, associated with one of the photodetectors, and to be electrically coupled to one or more ground ports of the TIA. The TIA pads are electrically connected to a common ground shared be each of said TIAs.
Abstract:
Individual channels of a multiplexed laser array in a multi-channel optical transmitter are monitored at an output of an optical multiplexer. The monitoring may be used to confirm proper operation of each of the channels in the multiplexed laser array and/or to perform wavelength locking on each of the channels. Monitoring at the output of the optical multiplexer avoids the use of multiple photodetectors coupled directly to multiple lasers in the multiplexed laser array. The multiplexed laser array generally includes a plurality of laser emitters optically coupled to an optical multiplexer such as an arrayed waveguide grating (AWG). An optical transmitter with a monitored multiplexed laser array may be used, for example, in an optical line terminal (OLT) in a wavelength division multiplexed (WDM) passive optical network (PON) or in any other type of WDM optical communication system capable of transmitting optical signals on multiple channel wavelengths.
Abstract:
A bidirectional optical subassembly (BOSA) optical networking unit (ONU) generally includes a BOSA housing. A tunable laser is located in the BOSA housing and is configured to generate a first optical signal for transmission at a first selected wavelength based on temperature control. The tunable laser is a distributed feedback (DFB) laser diode. A thermal management device is also located in the BOSA housing and is configured to provide the temperature control. A photo diode is further located in the BOSA housing and is configured to receive a second optical signal at a second selected wavelength. The BOSA housing comprises an alloy of stainless steel or an alloy of Kovar.
Abstract:
A thermally shielded multi-channel transmitter optical subassembly (TOSA) may be used in a multi-channel optical transceiver. The multi-channel TOSA generally includes an array of lasers optically coupled to an arrayed waveguide grating (AWG) to combine multiple optical signals at different channel wavelengths. A plurality of laser array thermal shields are thermally coupled to a temperature control device, such as a thermoelectric cooler (TEC), and thermally shield the respective lasers in the laser array in separate thermally shielded compartments. Each of the lasers may also be individually thermally controlled to provide a desired wavelength, for example, using a heater and/or cooler located in each thermally shielded compartment. The optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
Abstract:
The present disclosure is generally directed to a TO can laser package that includes an off-center focus lens integrated into a lens cap to compensate displacement of an associated laser diode. The TO can laser package includes a TO header with a mounting structure for directly electrically coupling an associated laser diode to electrical leads/pins without the use of an intermediate interconnect. The mounting structure displaces the laser diode such that an emission surface, and more particularly, an origin thereof, is displaced/offset relative to a center of the TO header. The integrated lens cap includes a focus lens with an optical center that is offset from a center of the TO header at a distance that is substantially equal to the displacement of the laser diode. Thus, the displacement of the laser diode is compensated for by the off-center focus lens to minimize or otherwise reduce optical misalignment.