Abstract:
Technology is generally described for computing paths between geographical localities. The technology can receive a request for a path between two or more geographical localities, and compute a path based at least on a popularity rating of intermediate geographical localities.
Abstract:
Techniques for determining the popularity of a business entity are provided. A communication is received at a computing system. The computing system searches the received communication for a business entity name. The computing system also searches the received communication for information related to an opinion about the business entity. Based on the information related to the opinion, the computing system determines a customer satisfaction rating of the business entity.
Abstract:
Technologies are generally described for providing a transition between predictive and mobile-assisted spectral allocation. In some examples, wireless devices may be enabled to determine adequacy of theft allocated spectral path to meet their communication needs by analyzing signal-to-noise ratios (SNRs) of their assigned sub-carriers. If a wireless device determines a current sub-carrier to be inadequate based on the analysis, it may send information associated with preferred sub-carriers to a base station. The base station may determine one or more nearby good clusters based on a comparison of a sequence of received preferred sub-carriers and the spectral paths represented by the nearby cluster centers, and select a re-allocated spectral path with shortest information distance to the sequence of preferred sub-carriers.
Abstract:
Techniques for determining the popularity of a business entity are provided. A communication is received at a computing system. The computing system searches the received communication for a business entity name. The computing system also searches the received communication for information related to an opinion about the business entity. Based on the information related to the opinion, the computing system determines a customer satisfaction rating of the business entity.
Abstract:
Techniques for sending signaling information using hierarchical coding are described. With hierarchical coding, individual messages for users are encoded using multiple interconnected encoders such that (1) the message for each user is sent at a data rate suitable for that user and (2) a single multicast message is generated for the messages for all users. A base station determines data rates supported by the users and the code rates to achieve these data rates. Each data rate is determined by one or more code rates. Signaling information for the users is mapped to data blocks to be sent at different data rates. Each data block is then encoded in accordance with the code rate(s) associated with the data rate for that data block. A final coded block is generated for all users and transmitted. Each user performs the complementary decoding to recover the message sent to that user.
Abstract:
Estimation of channel characteristics and interference level in a time-varying multi-carrier multi-user systems is carried out concurrently. To perform the estimation, a multitude of data symbols and dedicated pilot symbols are transmitted over the channel. Next, an initial estimate value is selected for the interference level. The initial estimate value for the interference level is used together with the received pilot symbols to provide a first estimate of the channel. The first estimate of the channel is used to determine a new updated value for the interference level, which in turn, is used to update the value of the first estimate of the channel iteratively. The iterations continue until the iteratively updated values of the interference level and channel satisfy predefined limits. The data symbols and the final updated value of the channel are subsequently used to provide a second estimate for the channel.
Abstract:
Techniques for performing channel estimation in a multi-carrier system are described. A frequency response estimate is initially obtained for a wireless channel based on a narrowband pilot sent on different sets of subbands in different symbol periods or a wideband pilot sent on all or most subbands in the system. Spectral estimation is performed on the frequency response estimate to determine at least one frequency component of the frequency channel estimate, with each frequency component being indicative of a delay for a channel tap in an impulse response estimate for the wireless channel. A channel estimate for the wireless channel is then obtained based on the frequency component(s) determined by the spectral estimation. This channel estimate may be a channel profile, the impulse response estimate, an improved frequency response estimate, a signal arrival time, or some other pertinent information regarding the wireless channel.
Abstract:
To perform time synchronization using spectral estimation, a receiver obtains a frequency response estimate for pilot symbols received on each set of frequency subbands used for pilot transmission. The receiver performs spectral estimation on frequency response estimates for different sets of subbands to obtain a measured arrival time for a transmission from a transmitter. The spectral estimation determines a dominant frequency component in the frequency response estimates and derives the measured arrival time based on this dominant frequency component. A time error between the measured arrival time and a desired arrival time is computed and possibly filtered. The filtered or unfiltered time error is scaled with a fixed or adjustable gain. A time adjustment is then generated based on the scaled time error and using linear and/or non-linear functions. The time adjustment is sent to the transmitter and used to adjust the transmit timing at the transmitter.