摘要:
A PM machine is provided. The PM machine includes a stator including a stator core, wherein the stator core defines multiple step-shaped stator slots. The stator includes multiple fractional-slot concentrated windings wound within the step-shaped stator slots. The stator also includes at least one cooling tube disposed around the windings. The stator further includes a first insulation layer disposed around the cooling tube. The stator also includes a second insulation layer disposed around the first insulation layer. The stator further includes at least one slot wedge configured to close an opening of a respective one of the step-shaped stator slots, wherein the slot wedge is further configured to adjust a leakage inductance in the PM machine. The PM machine also includes a rotor having a rotor core and disposed outside and concentric with the stator, wherein the rotor core includes a laminated back iron structure disposed around multiple magnets.
摘要:
A cooling system for an electrical machine is provided. The cooling system includes at least one baffle enclosing multiple endwindings, wherein the at least one baffle is configured to guide a cooling fluid flow to multiple regions of interest in the machine.
摘要:
A synchronous reluctance machine is provided. The synchronous reluctance machine includes a stator having a stator core, the stator core including a number of fractional-slot concentrated windings wound around multiple stator teeth. The synchronous reluctance machine also includes a rotor having a rotor core and disposed with an air gap inside and concentric with the stator, wherein the rotor core includes a number of laminated sheets, wherein each of the laminated sheets is axially skewed with respect to neighboring ones of the laminated sheets, and wherein each of the laminated sheets includes multiple ferromagnetic regions and multiple non-ferromagnetic regions formed of a single material.
摘要:
A system is provided in a permanent magnet (PM) machine comprises a stator, a rotor configured to rotate relative to the stator, a first set of windings disposed within the stator; and a second set of windings wound back and forth toroidally around the circumference of the stator. In accordance with an embodiment of the present technique the set of windings is configured to generate a magnetic flux saturating the stator so as to limit fault currents within the PM machine.
摘要:
A fault tolerant synchronous permanent magnet machine is disclosed that reduces rotor losses by limiting eddy-current losses in the retaining sleeve. The machine limits eddy-current loss by any one or combination of axially segmenting the retaining sleeve, providing a highly electrically conductive non-magnetic shield to the retaining sleeve, and by configuring stator teeth width, stator teeth tip width, and slot distribution of the stator.
摘要:
A PM machine is provided. The PM machine includes a stator including a stator core, wherein the stator core defines multiple step-shaped stator slots. The stator includes multiple fractional-slot concentrated windings wound within the step-shaped stator slots. The stator also includes at least one slot wedge configured to close an opening of a respective one of the step-shaped stator slots, wherein the slot wedge is further configured to adjust the leakage inductance in the PM machine. The PM machine also includes a rotor having a rotor core and disposed outside and concentric with the stator, wherein the rotor core includes a laminated back iron structure disposed around multiple axially-segmented magnets.
摘要:
A synchronous reluctance machine is provided. The synchronous reluctance machine includes a stator having a stator core, the stator core including a number of fractional-slot concentrated windings wound around multiple stator teeth. The synchronous reluctance machine also includes a rotor having a rotor core and disposed with an air gap inside and concentric with the stator, wherein the rotor core includes a number of laminated sheets, wherein each of the laminated sheets is axially skewed with respect to neighboring ones of the laminated sheets, and wherein each of the laminated sheets includes multiple ferromagnetic regions and multiple non-ferromagnetic regions formed of a single material.
摘要:
A fault tolerant synchronous permanent magnet machine is disclosed that reduces rotor losses by limiting eddy-current losses in the retaining sleeve. The machine limits eddy-current loss by any one or combination of axially segmenting the retaining sleeve, providing a highly electrically conductive non-magnetic shield to the retaining sleeve, and by configuring stator teeth width, stator teeth tip width, and slot distribution of the stator.
摘要:
A system configured to monitor an operating electrical device includes a testing channel coupled to the device. The device is coupled to an electric power source through at least one electric power transmission channel. The power source is configured to transmit electric power at a first frequency. The testing channel is coupled to the power transmission channel. The system also includes a signal generator coupled to the testing channel. The signal generator is configured to inject testing signals into the testing channel at a second frequency that is greater than the first frequency. The system further includes at least one apparatus magnetically coupled to the power transmission channel. The magnetically coupled apparatus is configured to present a first impedance to the electric power at the first frequency and present a second impedance to the test signals at the second frequency. The second impedance is greater than the first impedance.
摘要:
An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.