Abstract:
A catalyst component made from or containing Ti, Mg, chlorine, an amount of a first internal donor selected from esters of aliphatic monocarboxylic acids (EAA), and an amount of a second internal donor selected from cyclic ethers (CE), wherein the EAA/CE molar ratio ranges from 0.02 to less than 20.
Abstract:
A process for the preparation of high purity propylene polymers carried out in the presence of a catalyst comprising the product obtained by contacting:(a) a solid catalyst component comprising Mg, Ti and at least a first internal electron donor compound (1ID) selected among the succinates and a second internal electron donor compound (2ID) selected among the 1,3-diethers, wherein the molar ratio of first internal donor over second internal donor 1ID:2ID is comprised between 4:6 and 9:1, with (b) an organo-aluminum compound, and optionally with (c) an external electron donor compound, said process being carried out at a temperature equal or higher than 78° C. and by employing a molar ratio of organo-aluminum compound over solid catalyst component (b):(a) of lower than 5.
Abstract:
Preparing propylene polymer compositions comprising 50 to 90% by weight of a propylene (co)polymer, and 10 to 50% by weight of an ethylene copolymer. The polymerization process includes, in the presence of a catalyst system: (i) a first step of polymerizing propylene to produce the propylene (co)polymer; and (ii) a successive gas-phase polymerization step performed in the presence of the propylene (co)polymer, ethylene, and one or more α-olefins to produce the ethylene copolymer. The catalyst system contains the product obtained by contacting: (a) a solid catalyst component comprising at least two internal electron donor compounds, a succinate and a 1,3-diether; (b) an aluminum hydrocarbyl compound, and (c) optionally, an external electron donor compound.
Abstract:
Spherical adducts comprising a MgCl2, an alcohol ROH in which R is a C1-C10 hydrocarbon group, present in a molar ratio with MgCl2 ranging from 0.5 to 6 and less than 20% mol based on the mol of MgCl2 of a compound of formula Mg(OR1)2 in which R1 is selected from C1-C10 alkyl groups or R2CO groups in which R2 is selected from C1-C6 alkyl or aryl groups.
Abstract:
A process for the preparation of random copolymer of propylene containing up to 6.0% by weight of ethylene units, suitable for the manufacture of pipes, by copolymerizing propylene and ethylene in the presence of a catalyst system comprising the product obtained by contacting the following components:(a) a solid catalyst component comprising a magnesium halide, a titanium compound having at least a Ti-halogen bond and at least two electron donor compounds one of which being present in an amount from 40 to 90% by mol with respect to the total amount of donors and selected from succinates and the other being selected from 1,3 diethers,(b) an aluminum hydrocarbyl compound, and(c) optionally an external electron donor compound.
Abstract:
Fibers comprising a polypropylene obtainable by a process comprising the steps of: (i) polymerizing propylene in the presence of a catalyst system comprising the product obtained by contacting the following components: (a) a solid catalyst component comprising a magnesium halide, a titanium compound having at least a Ti-halogen bond and at least two electron donor compounds one of which being present in an amount from 40 to 90% by mol with respect to the total amount of donors and selected from succinates and the other being selected from 1,3 diethers, (b) an aluminum hydrocarbyl compound, and (c) optionally an external electron donor compound, to obtain a polypropylene precursor having a melt flow rate MFR1; (ii) subjecting the thus-obtained polypropylene precursor to visbreaking to obtain a visbroken polypropylene having a melt flow rate MFR2; (iii) spinning the visbroken polypropylene obtained in the previous step; wherein MFR2 is comprised between from 15 to 40 g/10 min, the ratio MFR2/MFR1 is comprised between 8 and 18, both MFR1 and MFR2 being measured according to ISO method 1133 (230° C., 2.16 kg).
Abstract:
Solid adducts comprising MgCl2 and an alcohol ROH in which R is a C1-C20 hydrocarbon group, in which the amount of alcohol ranges from higher than 42% to 60% by weight and the porosity determined with Hg method due to pores up to 1 μm and expressed in cm3/g, is such that the value of its ratio with the amount of alcohol in percentage falls above the straight line defined by the equation y=−0.0158x+1.03 in which y is the porosity of the adduct and x is the alcohol percentage by weight.
Abstract:
A propylene 1-hexene copolymer containing from 5.7 to 7.7% by weight of 1-hexene derived units, based upon the total weight of the propylene 1-hexene copolymer, having: a) a solubility in xylene at 25° C. ranging from 7.0 wt % to 15.0 wt %, based upon the total weight of the propylene 1-hexene copolymer; b) a melting temperature, measured by DSC ranging from 143.0° C. to 148.0° C.; c) a Melt Flow Rate (MFR, measured according to ASTM D 1238, 230° C./2.16 kg) from 3.5 to 8.0 g/10 min.; and d) a content of 1-hexene derived units in the fraction soluble in xylene at 25° C. ranging from 13.5 wt % to 18.5 wt %, based upon the total weight of the soluble fraction.
Abstract:
Solid adducts comprising MgCl2 and an alcohol ROH in which R is a C1-C20 hydrocarbon group, in which the amount of alcohol ranges from higher than 42% to 60% by weight and the porosity determined with Hg method due to pores up to 1 μm and expressed in cm3/g, is such that the value of its ratio with the amount of alcohol in percentage falls above the straight line defined by the equation y=−0.0158x+1.03 in which y is the porosity of the adduct and x is the alcohol percentage by weight.
Abstract:
Solid adducts comprising MgCl2, ethanol and water characterized in that the amount of ethanol ranges from 50% to less than 57% by weight, the amount of water is ranges from 0.5 to 5% by weight, the ethanol/water weight ratio is lower than 60 and the porosity determined with Hg method due to pores with radius up to 1 μm and expressed in cm3/g, is lower than 0.2.