Abstract:
Disclosed are preformed solid electrolyte interface (SEI) film graphite electrodes in lithium-sulfur based chemistry energy storage systems and methods of making the preformed SEI films on graphite electrodes to expand the use of graphite-based electrodes in previously non-graphite anode energy systems, such as lithium-sulfur battery systems. Also disclosed are lithium-ion sulfur battery systems comprising electrolytes that do not include an alkyl carbonate, such as those that do not include EC, and graphite anodes having preformed alkyl carbonate, such as EC-based SEI films.
Abstract:
A device comprising: a lithium sulfur redox flow battery comprising an electrolyte composition comprising: (i) a dissolved Li2Sx electroactive salt, wherein x≧4; (ii) a solvent selected from dimethyl sulfoxide, tetrahydrofuran, or a mixture thereof; and (iii) a supporting salt at a concentration of at least 2 M, as measured by moles of supporting salt divided by the volume of the solvent without considering the volume change of the electrolyte after dissolving the supporting salt.
Abstract translation:一种装置,包括:锂硫氧化物流电池,其包含电解质组合物,其包含:(i)溶解的Li 2 S x电活性盐,其中x≥4; (ii)选自二甲基亚砜,四氢呋喃或其混合物的溶剂; 和(iii)浓度至少为2M的支撑盐,其通过支撑盐的摩尔数除以溶剂的体积测量,而不考虑溶解支持盐后的电解质的体积变化。
Abstract:
Electrodes having nanostructure and/or utilizing nanoparticles of active materials and having high mass loadings of the active materials can be made to be physically robust and free of cracks and pinholes. The electrodes include nanoparticles having electroactive material, which nanoparticles are aggregated with carbon into larger secondary particles. The secondary particles can be bound with a binder to form the electrode.
Abstract:
Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.
Abstract:
Improved metal-based redox flow batteries (RFBs) can utilize a metal and a divalent cation of the metal (M2+) as an active redox couple for a first electrode and electrolyte, respectively, in a first half-cell. For example, the metal can be Zn. The RFBs can also utilize a second electrolyte having I−, anions of Ix (for x≧3), or both in an aqueous solution, wherein the I− and the anions of Ix (for x≧3) compose an active redox couple in a second half-cell.
Abstract:
Nanostructured bismuth materials can be utilized as an insertion material in electrodes for magnesium energy storage devices to take advantage of short diffusion lengths for Mg2+. The result can be a significantly increased charge/discharge rates and/or improved cycling stabilities. In one example, an energy storage device has magnesium as an electroactive species, an electrolyte salt containing magnesium, and an anode having bismuth nanostructures. The bismuth nanostructures have at least one dimension that is less than or equal to 25 nm. At least a portion of the magnesium is reversibly inserted into, and extracted from, the anode during discharging and charging states, respectively.
Abstract:
The performance of sodium-based energy storage devices can be improved according to methods and devices based on surface-driven reactions between sodium ions and functional groups attached to surfaces of the cathode. The cathode substrate, which includes a conductive material, can provide high electron conductivity while the surface functional groups can provide reaction sites to store sodium ions. During discharge cycles, sodium ions will bind to the surface functional groups. During charge cycles, the sodium ions will be released from the surface functional groups. The surface-driven reactions are preferred compared to intercalation reactions.
Abstract:
Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficicency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S2− and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.
Abstract:
Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.
Abstract:
A lithium metal pouch cell having a specific energy ≥300 Wh·kg−1 includes an anode comprising lithium metal and an anode current collector, the anode having an areal capacity N (mAh·cm−2); a cathode comprising a cathode material and a cathode current collector, the cathode having an a real capacity P (mAh·cm−2), wherein a ratio of N/P is within a range of 0.02 to 5; an electrolyte having an electrolyte mass E and comprising a lithium active salt and a solvent, the lithium metal pouch cell having an electrolyte mass to cell capacity (E/C) ratio within a range of 1 to 6 g·Ah−1; a separator positioned between the anode and the cathode; and a packaging material defining a pouch enclosing the anode, cathode, electrolyte, and separator; wherein a protruding tab of the anode current collector and a protruding tab of the cathode current collector are external to the pouch.