ELECTROLYTE FOR STABLE CYCLING OF HIGH-ENERGY LITHIUM SULFUR REDOX FLOW BATTERIES
    12.
    发明申请
    ELECTROLYTE FOR STABLE CYCLING OF HIGH-ENERGY LITHIUM SULFUR REDOX FLOW BATTERIES 有权
    用于高能量锂离子二氧化碳回流电池稳定循环的电解液

    公开(公告)号:US20160126580A1

    公开(公告)日:2016-05-05

    申请号:US14530442

    申请日:2014-10-31

    CPC classification number: H01M4/663 H01M8/20 H01M12/08 Y02E60/128

    Abstract: A device comprising: a lithium sulfur redox flow battery comprising an electrolyte composition comprising: (i) a dissolved Li2Sx electroactive salt, wherein x≧4; (ii) a solvent selected from dimethyl sulfoxide, tetrahydrofuran, or a mixture thereof; and (iii) a supporting salt at a concentration of at least 2 M, as measured by moles of supporting salt divided by the volume of the solvent without considering the volume change of the electrolyte after dissolving the supporting salt.

    Abstract translation: 一种装置,包括:锂硫氧化物流电池,其包含电解质组合物,其包含:(i)溶解的Li 2 S x电活性盐,其中x≥4; (ii)选自二甲基亚砜,四氢呋喃或其混合物的溶剂; 和(iii)浓度至少为2M的支撑盐,其通过支撑盐的摩尔数除以溶剂的体积测量,而不考虑溶解支持盐后的电解质的体积变化。

    High-Energy-Density, Aqueous, Metal-Polyiodide Redox Flow Batteries
    15.
    发明申请
    High-Energy-Density, Aqueous, Metal-Polyiodide Redox Flow Batteries 有权
    高能密度,水性,金属 - 多碘化物氧化还原流动电池

    公开(公告)号:US20150147673A1

    公开(公告)日:2015-05-28

    申请号:US14089499

    申请日:2013-11-25

    CPC classification number: H01M8/188 H01M8/20 Y02E60/528

    Abstract: Improved metal-based redox flow batteries (RFBs) can utilize a metal and a divalent cation of the metal (M2+) as an active redox couple for a first electrode and electrolyte, respectively, in a first half-cell. For example, the metal can be Zn. The RFBs can also utilize a second electrolyte having I−, anions of Ix (for x≧3), or both in an aqueous solution, wherein the I− and the anions of Ix (for x≧3) compose an active redox couple in a second half-cell.

    Abstract translation: 改进的基于金属的氧化还原电池(RFB)可以分别在第一半电池中利用金属(M2 +)的金属和二价阳离子作为第一电极和电解质的活性氧化还原对。 例如,金属可以是Zn。 RFB还可以在水溶液中使用具有Ix(x≥3)的阴离子或IIx的第二电解质,其中I和Ix的阴离子(对于x≥3)组成活性氧化还原对 第二个半单元格

    Electrodes for Magnesium Energy Storage Devices
    16.
    发明申请
    Electrodes for Magnesium Energy Storage Devices 审中-公开
    镁储能装置用电极

    公开(公告)号:US20140302354A1

    公开(公告)日:2014-10-09

    申请号:US13947914

    申请日:2013-07-22

    Inventor: Yuyan Shao Jun Liu

    Abstract: Nanostructured bismuth materials can be utilized as an insertion material in electrodes for magnesium energy storage devices to take advantage of short diffusion lengths for Mg2+. The result can be a significantly increased charge/discharge rates and/or improved cycling stabilities. In one example, an energy storage device has magnesium as an electroactive species, an electrolyte salt containing magnesium, and an anode having bismuth nanostructures. The bismuth nanostructures have at least one dimension that is less than or equal to 25 nm. At least a portion of the magnesium is reversibly inserted into, and extracted from, the anode during discharging and charging states, respectively.

    Abstract translation: 纳米结构的铋材料可以用作镁能量储存装置的电极中的插入材料,以利用Mg2 +的短扩散长度。 结果可以是显着增加的充电/放电速率和/或改善的循环稳定性。 在一个实例中,能量存储装置具有镁作为电活性物质,含镁的电解质盐和具有铋纳米结构的阳极。 铋纳米结构具有至少一个小于或等于25nm的尺寸。 分别在放电和充电状态期间,镁的至少一部分可逆地插入阳极中并从其中提取出来。

    Sodium-Based Energy Storage Device Based on Surface-Driven Reactions
    17.
    发明申请
    Sodium-Based Energy Storage Device Based on Surface-Driven Reactions 审中-公开
    基于表面驱动反应的钠基储能装置

    公开(公告)号:US20140199596A1

    公开(公告)日:2014-07-17

    申请号:US13740878

    申请日:2013-01-14

    Abstract: The performance of sodium-based energy storage devices can be improved according to methods and devices based on surface-driven reactions between sodium ions and functional groups attached to surfaces of the cathode. The cathode substrate, which includes a conductive material, can provide high electron conductivity while the surface functional groups can provide reaction sites to store sodium ions. During discharge cycles, sodium ions will bind to the surface functional groups. During charge cycles, the sodium ions will be released from the surface functional groups. The surface-driven reactions are preferred compared to intercalation reactions.

    Abstract translation: 可以根据钠离子和附着于阴极表面的官能团之间的表面驱动反应的方法和装置,改​​善钠基储能装置的性能。 包括导电材料的阴极基底可以提供高电子导电性,而表面官能团可以提供反应位点来储存钠离子。 在放电循环期间,钠离子将与表面官能团结合。 在充电循环期间,钠离子将从表面官能团释放出来。 与嵌入反应相比,表面驱动的反应是优选的。

    Iron-Sulfide Redox Flow Batteries
    18.
    发明申请
    Iron-Sulfide Redox Flow Batteries 有权
    铁硫化物氧化还原液流电池

    公开(公告)号:US20140079976A1

    公开(公告)日:2014-03-20

    申请号:US14079135

    申请日:2013-11-13

    Abstract: Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficicency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S2− and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

    Abstract translation: 硫化铁氧化还原液流电池(RFB)系统对于能量储存可能是有利的,特别是当电解质具有大于6的pH值时,这些系统可表现出优异的能量转换效率和稳定性,并且可以利用相对更安全的低成本材料 更环保。 硫化铁RFB的一个实例的特征在于在正电解质支持溶液中包含Fe(III)和/或Fe(II)的正电解质,负电解质,其包含负电解质支持中的S2-和/或S 溶液以及将正电解质和电极与负电解质和电极分离的膜或隔膜。

    Lithium metal pouch cells and methods of making the same

    公开(公告)号:US11189828B2

    公开(公告)日:2021-11-30

    申请号:US16552315

    申请日:2019-08-27

    Abstract: A lithium metal pouch cell having a specific energy ≥300 Wh·kg−1 includes an anode comprising lithium metal and an anode current collector, the anode having an areal capacity N (mAh·cm−2); a cathode comprising a cathode material and a cathode current collector, the cathode having an a real capacity P (mAh·cm−2), wherein a ratio of N/P is within a range of 0.02 to 5; an electrolyte having an electrolyte mass E and comprising a lithium active salt and a solvent, the lithium metal pouch cell having an electrolyte mass to cell capacity (E/C) ratio within a range of 1 to 6 g·Ah−1; a separator positioned between the anode and the cathode; and a packaging material defining a pouch enclosing the anode, cathode, electrolyte, and separator; wherein a protruding tab of the anode current collector and a protruding tab of the cathode current collector are external to the pouch.

Patent Agency Ranking