Abstract:
The present invention is directed to a new polypropylene composition, polypropylene fibres comprising said polypropylene composition, a spunbonded fabric comprising said polypropylene fibres and/or polypropylene composition, an article comprising said polypropylene fibres and/or said spunbonded fabric as well as to a process for the preparation of such spunbonded fabric and the use of such polypropylene composition for improving the stability of a fibre spinning line.
Abstract:
Synergistic visbreaking composition of peroxide and a hydroxylamine ester for increasing the visbreaking efficiency for polypropylene polymers at melt extrusion temperatures below 250° C. and its use in visbreaking polypropylene. The present invention is furthermore related to the use of such visbroken polypropylene polymers for producing melt blown non-wovens with improved barrier properties.
Abstract:
The present invention is directed to a new polypropylene composition comprising a propylene homopolymer and a polymeric nucleating agent, to melt-blown fibers comprising the polypropylene composition, to a melt-blown web comprising the melt-blown fibers and/or the polypropylene composition, to an article comprising the melt-blown fibers and/or the melt-blown web as well as to the use of the polypropylene composition for improving the relation between pressure drop and hydrohead of a melt-blown web and for improving the thermo-mechanical properties of a melt-blown web in machine direction (MD) and transverse direction (TD).
Abstract:
Synergistic visbreaking composition of peroxide and a hydroxylamine ester for increasing the visbreaking efficiency for polypropylene polymers at melt extrusion temperatures below 250° C. and its use in visbreaking polypropylene. The present invention is furthermore related to the use of such visbroken polypropylene polymers for producing melt blown non-wovens with improved barrier properties.
Abstract:
The present invention is directed to a new polypropylene composition comprising a propylene homopolymer and a polymeric nucleating agent, to melt-blown fibers comprising the polypropylene composition, to a melt-blown web comprising the melt-blown fibers and/or the polypropylene composition, to an article comprising the melt-blown fibers and/or the melt-blown web as well as to the use of the polypropylene composition for improving the relation between pressure drop and hydrohead of a melt-blown web and for improving the thermo-mechanical properties of a melt-blown web in machine direction (MD) and transverse direction (TD).
Abstract:
The present invention is directed to a new polypropylene composition comprising a propylene homopolymer, to a melt-blown fiber comprising the polypropylene composition, to a melt blown web comprising the melt blown fiber and/or the polypropylene composition, to an article comprising the melt blown fiber and/or the melt blown web as well as to the use of the polypropylene composition for improving the relation between pressure drop and hydrohead of a melt-blown web.
Abstract:
The present invention is directed to a new composite material comprising melt blown fiber based on a propylene copolymer and a fibrous substrate material, a process for the preparation of such a composite material, articles made therefrom as well as to the use of the propylene copolymer for the preparation of such a composite material or article and the use of the propylene copolymer for reducing the hot air volume during a melt blowing process.
Abstract:
Use of polymer composition comprising a first propylene polymer A and a second propylene polymer B for producing crimped multicomponent fiber having a side by side cross-sectional configuration.
Abstract:
The present invention relates to a composite comprising a nonwoven fabric being the substrate of the composite, wherein the nonwoven fabric comprises a polymer (A) selected from the group consisting of polyethylene, polypropylene, polyethylene terephthalate and polyamide; and a coating layer, wherein the coating layer comprises a polymer (B), wherein said polymer is an ethylene copolymer, preferably a polar ethylene copolymer; whereby the coating layer overlays at least one surface of the nonwoven fabric; and whereby the composite has a water vapor transmission rate (WTVR) according to ASTM E-96 ((water cup method) at 38° C. at 50% RH at the outside of the sample and 100% RH at the inside of the samples) of more than 50 g/[m2/24 h], preferably of more than 100 g/[m2/24 h].