Abstract:
A medical device for sympathetic nerve ablation may include a catheter shaft, an expandable member disposed on or coupled to the catheter shaft, and a plurality of elongate electrode assemblies each constructed as a flexible circuit having a plurality of layers. The expandable member may be configured to shift between an unexpanded configuration and an expanded configuration. The plurality of electrode assemblies may be disposed on an outer surface of the expandable member. Each of the plurality of electrode assemblies may include enhanced tear resistance properties such as through the inclusion of a reinforcement structure with one or more of the layers of the electrode assemblies.
Abstract:
A guide catheter may include a tubular member having an inner layer defining a lumen extending therethrough, a reinforcing braid disposed about the inner layer, a plurality of steering wires interwoven through the reinforcing braid, and an outer layer disposed about the reinforcing braid. At least a portion of the reinforcing braid may be embedded within the outer layer. An introducer sleeve may be slidably disposed over the tubular member. A flush port element may be operably connected to the introducer sleeve.
Abstract:
Systems for the delivery of endoluminal devices are disclosed. An illustrative system may include a delivery sheath having an inner sheath and an outer sheath. The delivery sheath may be configured to restrain a stent in a compressed delivery configuration. The outer sheath may cover the entire length of the stent and the inner sheath may cover a portion of the length of the stent.
Abstract:
Medical devices and methods for drying medical devices are disclosed. An example method for drying a medical device may include disposing a medical device within a drying apparatus. The drying apparatus may include a variable frequency microwave heating device. The medical device may include a substrate, the substrate including an active pharmaceutical ingredient and a solvent. The method may also include heating the medical device with the drying apparatus. Heating may evaporate at least a portion of the solvent.
Abstract:
Medical devices for sympathetic nerve modulation are disclosed. An example medical device for sympathetic nerve modulation may include a catheter shaft having a distal region. A compliant balloon may be coupled to the distal region. A flexible circuit assembly may be coupled to the compliant balloon. The flexible circuit assembly may include one or more electrodes. An expansion-limiting member may be coupled to the compliant balloon.
Abstract:
A guide catheter may include a tubular member having an inner layer defining a lumen extending therethrough, a reinforcing braid disposed about the inner layer, a plurality of steering wires interwoven through the reinforcing braid, and an outer layer disposed about the reinforcing braid. At least a portion of the reinforcing braid may be embedded within the outer layer. An introducer sleeve may be slidably disposed over the tubular member. A flush port element may be operably connected to the introducer sleeve.
Abstract:
Catheter systems and methods for determining blood flow rates based on light reflection measurements. The catheter may include a lumen extending between a proximal end of the catheter and a distal end of the catheter. The catheter may include fluid infusion openings at the distal end region of the catheter that are configured to permit the indicator fluid to exit the catheter from the lumen. The catheter system may include an optical fiber having one or more sensors thereon for sensing light reflected by blood particles in a body vessel lumen. A blood flow rate may be determined based on the sensed light reflected by blood particles in the body vessel lumen.
Abstract:
An atherectomy device is disclosed herein. The atherectomy device includes a first drive shaft, a second drive shaft, a handle assembly, and a cutting member. The first drive shaft extends distally from the handle assembly and includes the cutting member mounted on a distal end region of the first drive shaft. The second drive shaft extends distally from the handle assembly to a distal end of the second drive shaft such that both the first and the second drive shafts are rotatable relative to the handle assembly, and the first drive shaft is rotatable independent of the second drive shaft.
Abstract:
Medical devices and methods for drying medical devices are disclosed. An example method for drying a medical device may include disposing a medical device within a drying apparatus. The drying apparatus may include a variable frequency microwave heating device. The medical device may include a substrate, the substrate including an active pharmaceutical ingredient and a solvent. The method may also include heating the medical device with the drying apparatus. Heating may evaporate at least a portion of the solvent.
Abstract:
A microparticle includes a plurality of magnetic nanoparticles having a Curie temperature between 40° and 100° C. The microparticle further includes a biocompatible polymer and/or biocompatible ceramic and a plurality of radiopaque nanoparticles.