Abstract:
The present invention is generally directed to a system for taking displacement measurements of an object. The invention is realized by various embodiments. In one embodiment, the invention utilizes the Moiré effect to take precise displacement measurements of an object. In this regard, a visible pattern is disposed on an object, and a plurality of photosensors are uniformly spaced apart from the visible pattern. Importantly, the spacing between the photosensors is slightly different than the spacing of lines forming a projection or image of the visible pattern. This allows the invention to utilize the Moiré effect to accurately compute precise displacements or movements of the object. In this respect, electrical signal generated by the photosensor array will embody a repeating envelope pattern resulting from the difference in the pitch of the photosensors and the pitch of the projection or image of the visible pattern. This envelope has a spatial frequency that is significantly lower than the frequency of either the image (or projection) of the visible pattern or the photosensor array, where the frequencies of the image or projection of the visible pattern and the photosensor array are equal to the reciprocal of the distances separating adjacent pattern demarcations or adjacent photosensor elements respectively. Thus, small lateral motion of the object bearing the visible pattern, made parallel to the direction of the repetition of the repeating patterns, produces a relatively large shift in the position of the signal envelope which has a lower spatial frequency. Even slight displacements of the object bearing the visible pattern can thus be readily detected Also, various arrangements of one or more photosensor arrays and optics, some at angles to one another, are used to measure object displacements and rotations in three dimensions.
Abstract:
The present invention is generally directed to a system for taking displacement measurements of an object. The invention is realized by various embodiments. In one embodiment, the invention utilizes the Moiré effect to take precise displacement measurements of an object. In this regard, a visible pattern is disposed on an object, and a plurality of photosensors are uniformly spaced apart from the visible pattern. Importantly, the spacing between the photosensors is slightly different than the spacing of lines forming a projection or image of the visible pattern. This allows the invention to utilize the Moiré effect to accurately compute precise displacements or movements of the object. In this respect, electrical signal generated by the photosensor array will embody a repeating envelope pattern resulting from the difference in the pitch of the photosensors and the pitch of the projection or image of the visible pattern. This envelope has a spatial frequency that is significantly lower than the frequency of either the image (or projection) of the visible pattern or the photosensor array, where the frequencies of the image or projection of the visible pattern and the photosensor array are equal to the reciprocal of the distances separating adjacent pattern demarcations or adjacent photosensor elements respectively. Thus, small lateral motion of the object bearing the visible pattern, made parallel to the direction of the repetition of the repeating patterns, produces a relatively large shift in the position of the signal envelope which has a lower spatial frequency. Even slight displacements of the object bearing the visible pattern can thus be readily detected Also, various arrangements of one or more photosensor arrays and optics, some at angles to one another, are used to measure object displacements and rotations in three dimensions.
Abstract:
A scanning device and method for forming a scanned electronic image include using navigation information that is acquired along with image data, and then rectifying the image data based upon the navigation and image information. The navigation information is obtained in frames. The differences between consecutive frames are detected and accumulated, and this accumulated displacement value is representative of a position of the scanning device relative to a reference. The image data is then positioned-tagged using the position data obtained from the accumulated displacement value. To avoid the accumulation of errors, the accumulated displacement value obtained from consecutive frames is updated by comparing a current frame with a much earlier frame stored in memory and using the resulting difference as the displacement from the earlier frame. These larger displacement steps are then accumulated to determine the relative position of the scanning device.
Abstract:
A method of simulating a factory. Characteristics such as job skills of people in the factory are modeled along with characteristics of machines in the factory. Chicken charts and time-state charts are used to validate and verify the model.
Abstract:
A hot chuck assembly characterized by a platen suspended over a base assembly by four, equally spaced mounting assemblies. The suspension points on the platen are provided as close as possible to its upper, wafer support surface so that thermal expansion of the platen has a minimal effect on the position of a supported wafer. Each of the mounting post assemblies includes a pair of resilient leg portions which can flex in a radial direction to absorb radial expansion or contraction of the platen. In consequence, the hot chuck assembly of the present invention minimizes both lateral and axial displacement of a supported integrated circuit wafer as the platen heats and cools.
Abstract:
An automated cassette handler for transporting a cassette containing integrated circuit wafers between first and second elevators in a standardized mechanical interface (SMIF) system for integrated circuit processing. The handler is adapted to grip and transport the cassette while positively pushing the wafers into the cassette.
Abstract:
An intrusion delaying barrier includes primary and secondary physical structures and can be instrumented with multiple sensors incorporated into an electronic monitoring and alarm system. Such an instrumented intrusion delaying barrier may be used as a perimeter intrusion defense and assessment system (PIDAS). Problems with not providing effective delay to breaches by intentional intruders and/or terrorists who would otherwise evade detection are solved by attaching the secondary structures to the primary structure, and attaching at least some of the sensors to the secondary structures. By having multiple sensors of various types physically interconnected serves to enable sensors on different parts of the overall structure to respond to common disturbances and thereby provide effective corroboration that a disturbance is not merely a nuisance or false alarm. Use of a machine learning network such as a neural network exploits such corroboration.
Abstract:
Barrier elements provide security from terrorist threats by ability to withstand both vehicle collisions and explosive blasts. Each barrier element is prefabricated to include a massive block of durable material, in some embodiments segmented, with at least one tunnel extending at least partially between respective cavities in two opposite sides of the block. Each barrier element also includes at least one beam that is preferably made of steel and extends through one such tunnel. Multiple blocks are positionable slidably on top of the ground side-against-side with their beams coupled longitudinally to one another at least approximately end-to-end. Retainer means can be used to block coupling means from entry into the tunnels. Forces from a vehicle collision or an explosive blast can cause barrier elements to rotate relative to one-another when the couplings between beams hinge or bend as the durable material that interferes with the rotation breaks away.
Abstract:
A freestanding collision obstacle is disclosed which is propelled away from a collision obstacle sensing apparatus by the force of a collision event that occurs when a moving object, for example a toy vehicle such as a racecar, collides with the collision obstacle. A collision obstacle sensing apparatus is disclosed which incorporates a collision obstacle and a collision obstacle sensor, the latter of which senses the presence or absence of the collision obstacle. The collision obstacle sensing apparatus is thus used to detect an event time as the time of a collision event. Use of a collision obstacle and a collision obstacle sensing apparatus in each lane at the finish line of a multilane raceway, with the moving objects individually confined to respective lanes of the raceway, enables electronic determination of the outcome of a race. Preferred embodiments are disclosed using optical and/or capacitance sensors.
Abstract:
An immersive display system which provides for an optical correlator for imaging a surface and generating data representative of the position or movement of the optical correlator and any object physically associated with the optical correlator. Imagery is generated and displayed on a display device in accordance with the data generated by the optical correlator.