Abstract:
The present invention relates to a micro resonator assembly (16), comprising a body (2) which is covered with a layer (6) of at least one material at least at an intended point of interaction between the micro resonator (4) and an associated coupling element (10, 12) when using the micro resonator (4), whereby the layer (6) has a transparent thickness (8) which corresponds to a desired distance (8) between the micro resonator (4) and an associated coupling element (10, 12) at least at the intended point (14) of interaction, and to a manufacturing process therefor.
Abstract:
A method of manipulating a laser source, includes analyzing an optical signal generated by the laser source, evaluating on the basis of the analysis an actual indicator corresponding with an actual value of a tuning velocity of the laser source, comparing the actual indicator with a desired indicator corresponding with a desired value of the tuning velocity to detect a deviation of the actual value of the tuning velocity from the desired value of the tuning velocity, and compensating the deviation if any by manipulating at least one parameter influencing the signal of the laser source.
Abstract:
The present invention relates to a determination of a physical state of an optical device by measuring a response signal.At least two subsequent measurements are executed. Therefore, a first optical signal is transmitted to the optical device, wherein a first optical property of said first signal is varied according to a first function of the time. A second optical property of a first response signal returning from the optical device is measured over the time and a first result function of the second optical property of the first response signal over the first optical property of first optical signal is established. Further, a second optical signal is transmitted to the optical device, wherein the first optical property of said signal is varied according to a second function of the time that is different from the first function of time. The second optical property of the corresponding second response signal is measured and a second result function of the second optical property of the response signal over the first optical property of the transmitted optical signal is established. The physical state of the optical device is determined on the base of a combination of the first and second result functions.
Abstract:
A wavelength tunable laser unit has a laser mode selection, and is adapted to provide a laser signal in accordance with one or more laser control parameters. For operating the laser unit, the laser signal is swept in a wavelength range, a laser operation signal indicative of the laser unit's operation during the sweep is received, and the laser operation signal is analyzed for detecting an indication of a mode hop occurred in the generated laser signals during the sweep. At least one correction value is determined based on the detected mode hop indication, and at least one of the one or more laser control parameters, applicable for a next wavelength sweep, is modified based on the determined at least one correction value.
Abstract:
A ring laser arrangement adapted for providing an optical beam travelling on an optical path representing a closed loop includes a laser gain medium coupled into the optical path for amplifying the optical beam by stimulated emission, and a wavelength filter coupled into the optical path for providing a wavelength selection to the optical beam travelling along the optical path.
Abstract:
A beam splitter comprises a splitting device receiving at a first surface a first incident beam in an angle α with respect to the optical axis. A portion of the first incident beam will be reflected at the first surface at the angle α to the optical axis on opposite side with respect to the first incident beam. A second beam will be transmitted through the splitting device. The angle α is selected that the reflected portion is substantially independent of the state of polarization of the first incident beam.
Abstract:
First and second transmitted optical waves having orthogonal polarization states are combined in a polarization multiplexed optical wave. At an optical receiver, an electrical field of the polarization multiplexed optical wave is measured. A plurality of polarization states of the polarization multiplexed optical wave is determined from the measured electrical field. From the plurality of polarization states, a transform that aligns the orthogonal polarization states of the first and second transmitted optical waves with respect to principal axes of the optical receiver is estimated. The first and second transmitted optical waves are recovered by applying the transform to one of i) the polarization multiplexed optical wave and ii) the measured electrical field of the polarization multiplexed optical wave.
Abstract:
Detecting different spectral components of a response signal received from a device under test -DUT- in response to a stimulus signal, with a first splitter receiving the response signal and wavelength depending splitting from response signal a first partial signal and a second partial signal, a second splitter receiving the second partial signal and wavelength depending splitting there from a third partial signal, an optical detector, for receiving the first partial signal and the third partial signal and determining a corresponding optical power, and an optical shutter arranged to be moved to either let through to or block from the optical detector one of: the first partial signal and the third partial signal.
Abstract:
A laser being tunable in wavelength includes a first reflecting unit and a second reflecting unit, both reflecting units being arranged to at least partially reflect an incident beam of electromagnetic radiation towards each other, an optical path of said beam of electromagnetic radiation within said cavity, which is defined in length by said first and second reflecting unit, a dispersive device, which is arranged, such that a portion of said optical path of said beam of electromagnetic radiation traverses through said dispersive device, wherein said dispersive device comprises a dispersive characteristic representing a functional dependence of an optical path length of said portion with respect to wavelength of said electromagnetic radiation, wherein said optical path length increases with an increasing wavelength of said electromagnetic radiation.
Abstract:
Detecting different spectral components of a response signal received from a device under test -DUT- in response to a stimulus signal, with a first splitter receiving the response signal and wavelength depending splitting from response signal a first partial signal and a second partial signal, a second splitter receiving the second partial signal and wavelength depending splitting there from a third partial signal, an optical detector, for receiving the first partial signal and the third partial signal and determining a corresponding optical power, and an optical shutter arranged to be moved to either let through to or block from the optical detector one of: the first partial signal and the third partial signal.