摘要:
Novel materials are provided, having a single phenyl or a chain of phenyls where there is a nitrogen atom on each end of the single phenyl or chain of phenyls. The nitrogen atom may be further substituted with particular thiophene, benzothiophene, and triphenylene groups. Organic light-emitting devices are also provided, where the novel materials are used as a hole transport material in the device. Combinations of the hole transport material with specific host materials are also provided.
摘要:
An organic light emitting device is provided. The device has an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer may include a molecule of Formula I wherein an alkyl substituent at position R′5 results in high efficiency and operational stability in the organic light emitting device. Additionally or alternatively, the emissive layer may include a metal-ligand complex in which the ligand is an aryl or alkyl substituted phenylpyridine ligand.
摘要:
An organic light emitting device is provided. The device has an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer further includes a molecule of Formula I (shown below) wherein an alkyl substituent at position R′5, which is an alkyl substituent, results in high efficiency and operational stability in the organic light emitting device.
摘要:
An organic light emitting device is provided. The device has an anode, a cathode, and an emissive layer disposed between the anode and the cathode, the emissive layer further comprising an emissive material having the structure: wherein each of the variables are defined herein.
摘要:
An organic light emitting device is provided. The device has an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer further includes a molecule of Formula I wherein an alkyl substituent at position R′5 results in high efficiency and operational stability in the organic light emitting device.
摘要:
A device is provided, having an anode, a cathode, and a first organic layer disposed between the anode and the cathode. The first organic layer produces phosphorescent emission when a voltage is applied between the anode and the cathode. An organic enhancement layer disposed between the first organic layer and the cathode is also provided. The organic enhancement layer is in direct contact with the first organic layer. The organic enhancement layer may comprise a material of structure (I): The material of structure I is thermally stable and is a high energy band gap material.
摘要:
Compounds comprising a metal complex having novel ligands are provided. In particular, the compound is an iridium complex comprising novel aza DBX ligands. The compounds may be used in organic light emitting devices, particularly as emitting dopants, providing improved efficiency, low operating voltage, and long lifetime.
摘要:
An organic light emitting device is provided. The device has an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer may include a molecule of Formula I wherein an alkyl substituent at position R′5 results in high efficiency and operational stability in the organic light emitting device. Additionally or alternatively, the emissive layer may include a metal-ligand complex in which the ligand is an aryl or alkyl substituted phenylpyridine ligand.
摘要:
Triphenylene containing benzo-fused thiophene compounds are provided. Additionally, triphenylene containing benzo-fused furan compounds are provided. The compounds may be useful in organic light emitting devices, particularly as hosts in the emissive layer of such devices, or as materials for enhancement layers in such devices, or both.
摘要:
A new class of compounds containing aza-dibenzothiophene or aza-dibenzofuran are provided. The compounds may be used in organic light emitting devices giving improved stability, improved efficiency, long lifetime and low operational voltage. In particular, the compounds may be used as the host material of an emissive layer having a host and an emissive dopant, or as a material in an enhancement layer.