Abstract:
Embodiments of the present disclosure discloses a touch panel; a plurality of second electrodes; a plurality of the first electrode leads for leading the first electrodes, which are connected to each other, out of a touch area; a plurality of the second electrode leads for leading the second electrodes, which are connected to each other, out of the touch area. The touch panel further includes at least one transparent conductive layer which is formed on at least one surface of each of the first and/or second electrode leads and which is formed in the same layer as at least one of the first and second electrodes, the first and second connecting wires. The embodiments of the present disclosure may prevent oxidation of the electrode leads and increase adhesion without increasing manufacture processes.
Abstract:
An embodiment of the invention provides a method for forming microcapsules for electrophoresis display by forming microcapsules through a complex coacervation reaction between a sulfonated styrene maleic anhydride copolymer and gelatin, wherein a mass ratio of the sulfonated styrene maleic anhydride copolymer to the gelatin is 1:10˜10:1. The method of the embodiment of the invention not only can obtain microcapsules with good sealability and stability, but also can obtain microcapsules having evenly distributed particle sizes and low cost.
Abstract:
The invention provides a vinyl ether group-containing copolymer, preparation process and use thereof. The copolymer comprises of the structural units represented by the following general formulae I, II and III, wherein, R1 is O or HN, R2 is an alkyl group with a carbon atom number of 1-4, cyclohexyl or a group represented by the following general formula IV (m represents a positive integer of 1-3), n is a positive integer of 1-4, the molar numbers of the structural units represented by the general formulae I, H and III are x, y and z, respectively, and x:y:z=3-8:1-4:1-5, the weight average molecular weight of the copolymer is 5000-20000. A color light blocking agent added with the copolymer can increase sensitivity. Furthermore, the copolymer has solubility in an alkaline solution, and thus, the color light blocking agent added with the copolymer has a superior developing property.
Abstract:
The invention provides a conductive graphene-metal composite material, which is a composite of monolayer graphene nanoflakes and metal or metal oxide. The monolayer graphene nanoflakes of the invention are made by exfoliating graphite, and have a good combination with metal material by adopting an ultrasonic treatment or a mechanical agitation treatment. The graphene is uniformly dispersed therein and forms a conductive network, which can improve the electrochemical activity efficiently and reduce the resistance against the transfer of the charges efficiently. Use of the graphene-metal composite electrode reduces the costs of processes and facilities, on the premise of good properties. It can be used to replace the ITO conductive layer of the liquid crystal display.
Abstract:
An embodiment of the invention provides a method for forming microcapsules for electrophoresis display by forming microcapsules through a complex coacervation reaction between a sulfonated styrene maleic anhydride copolymer and gelatin, wherein a mass ratio of the sulfonated styrene maleic anhydride copolymer to the gelatin is 1:10˜10:1. The method of the embodiment of the invention not only can obtain microcapsules with good sealability and stability, but also can obtain microcapsules having evenly distributed particle sizes and low cost.
Abstract:
A display substrate includes a base substrate, a pixel definition layer, an isolation layer, and an isolated layer. The pixel definition layer includes pixel openings penetrating through the pixel definition layer. The isolation layer is not overlapping with the pixel openings. The isolation layer includes a first isolation portion and a second isolation portion. A slope angle formed by at least one side edge and a bottom edge in a cross section of the second isolation portion is an obtuse angle. There is a gap between the first isolation portion and the second isolation portion at the obtuse angle. The isolated layer includes a first isolated portion covering the isolation layer, and a second isolated portion and a third isolated portion on both sides of the first isolation portion respectively. The thickness of the first isolation portion is larger than the thickness of the isolated layer.
Abstract:
The present application relates to the technical field of display, and discloses an OLED display panel and a display device. The OLED display panel includes a drive backplane; and an OLED device, an encapsulation structure and a color resistor structure which are arranged on the drive backplane; the encapsulation structure and the color resistor structure are located on a side, facing away from the drive backplane, of the OLED device, and the color resistor structure includes a chromatic color resistor layer, a first BM and a second BM; and the first BM is located on a side, facing away from the drive backplane, of the chromatic color resistor layer, and the second BM is located on a side, facing the drive backplane, of the chromatic color resistor layer.
Abstract:
Provided are a display panel and a display apparatus. The display panel includes a fingerprint identification sensor, a first light shield layer disposed on the fingerprint identification sensor and a color film layer disposed on the first light shield layer, wherein the color film layer includes color filters with different colors and light transmission parts disposed between the color filters with different colors; the first light shield layer includes first openings and light shield parts, the light transmission parts and the first openings are used for allowing fingerprint reflected light to transmit and reach the fingerprint identification sensor, and the light shield parts are used for blocking out stray light.
Abstract:
A method of fabricating a display panel includes forming a first conductive layer on a base substrate, wherein the first conductive layer is formed in an encapsulated area and a peripheral area of the display panel; forming an organic insulating layer on a side of the first conductive layer away from the base substrate, wherein the organic insulating layer is formed to be limited in the encapsulated area; forming a first inorganic insulating layer on a side of the organic insulating layer away from the base substrate; forming a second conductive layer on a side of the organic insulating layer and the first inorganic insulating layer away from the base substrate, wherein the second conductive layer is formed in the encapsulated area and the peripheral area; and forming a second inorganic insulating layer, the second inorganic insulating layer formed between the organic insulating layer and the first conductive layer.
Abstract:
The present application relates to the technical field of display, and discloses an OLED display panel and a display device. The OLED display panel includes a drive backplane; and an OLED device, an encapsulation structure and a color resistor structure which are arranged on the drive backplane; the encapsulation structure and the color resistor structure are located on a side, facing away from the drive backplane, of the OLED device, and the color resistor structure includes a chromatic color resistor layer, a first BM and a second BM; and the first BM is located on a side, facing away from the drive backplane, of the chromatic color resistor layer, and the second BM is located on a side, facing the drive backplane, of the chromatic color resistor layer.