Abstract:
A variety of steerable needles, lancets, trocars, stylets, cannulas and systems are provided for examining, diagnosing, treating, or removing tissue from a patient. The steerable needles, trocars, stylets, cannulas and systems also provide a platform for delivery of target materials, such as therapeutics, biologics, polymers, glues, etc., to a target site. An embodiment of the invention includes a steerable device for use in accessing target site in a patient comprising: a steerable member adapted to penetrate tissue; and a steering mechanism adapted to be operated by a user to apply a bending force to bend the steerable member to access the target site.
Abstract:
A catheter system comprising a guidewire, an endovascular catheter, and an aspiration catheter. The guidewire has an expandable occluder mounted on a distal end. The guidewire and the endovascular catheter are insertable into a lumen of the aspiration catheter. The aspiration catheter also includes infusion and aspiration lumen(s) and port(s). Methods of using the catheter system for treating a vascular lesion and removing embolic material during the procedure are also disclosed.
Abstract:
Modular systems comprising a cannula and at least one access port adjacent to a distal end of the cannula provide insertion of one or more therapeutic or diagnostic devices into a vessel or cardiac tissue through a single incision site. Other embodiments include a vessel introducer or multi-port introducer. The devices can be operated in combination or independently. The systems can be employed to provide multiple therapies, including blood perfusion, filtration, aspiration, vessel occlusion, atherectomy, and endoscopic devices. Methods of using the system for vessel cannulation are also disclosed herein.
Abstract:
An expansion mechanism that includes an elongate instrument and a plurality of struts arranged around the elongate instrument provides radial expansion of a medical device. Each strut has a first end pivotally connected to the elongate instrument and a second strut that expands radially outward. Each strut further carries a flexible line which has a proximal end and a distal end. The distal end of each line passes beyond the second end of the strut which carries it and is attached to the strut immediately adjacent the strut which carries it. Methods of using such an expansion mechanism are also disclosed, particularly to provide deployment of medical devices within a patient's blood vascular system.
Abstract:
An expansion frame system for deploying medical devices in a patient's body cavity. The system typically includes an inner wire disposed within a lumen of an outer wire. Distal ends of the inner and outer wires are attached to a substantially circular frame at first and second points. During use, the outer wire is displaced relative to the inner wire, causing the circular frame to rotate about an axis perpendicular to the line defined by the first and second points. Medical devices, such as a filter, a stent, an occluder or a manometer, can be mounted on the circular frame. The diameter of the expansion frame can be varied to achieve optimal contact with the luminal wall of the body cavity. Methods of using the expansion frame system for temporary or permanent placement of a medical device is disclosed.
Abstract:
A filter device for temporary placement of a filter in an artery or vein is disclosed. The device includes an expandable filter mounted on a distal end of a catheter. The filter comprises a plurality of circumferentially adjacent porous segments which are arranged generally about the surface of a cone having an open base, and the segments are engaged to one another by means, such as a hook. The filter conforms to the interior of a vessel wall when expanded and contracts to a consistent diameter without bunching when stowed. Methods of using the filter device to entrap and remove embolic material from a vessel during endovascular procedures are also disclosed.
Abstract:
The invention provides a device having first and second balloons. Each of the first and second balloons communicates with an inflation lumen. A differential pressure gauge communicates with both inflation lumens. Each of the inflation lumens also communicates independently with a pump for inflating the balloon. The pressure gauge may include a shut-off valve for terminating inflation in the second balloon when the pressure within the first balloon exceeds the pressure in the second balloon. The pressure gauge may also include a pressure limiter. Methods of using the devices for measuring diameter and pressure of a balloon occluder deployed in a vessel or body cavity are disclosed.
Abstract:
An expansion frame system for deploying medical devices in a patient's body cavity. The system typically includes an inner wire disposed within a lumen of an outer wire. Distal ends of the inner and outer wires are attached to a substantially circular frame at first and second points. During use, the outer wire is displaced relative to the inner wire, causing the circular frame to rotate about an axis perpendicular to the line defined by the first and second points. Medical devices, such as a filter, a stent, an occluder or a manometer, can be mounted on the circular frame. The diameter of the expansion frame can be varied to achieve optimal contact with the luminal wall of the body cavity. Methods of using the expansion frame system for temporary or permanent placement of a medical device is disclosed.
Abstract:
A method of treating tissue lyophilizes a biocompatible polymer having a functionality equal to or greater than three. The method provides a protein solution. The method mixes the protein solution with the lyophilized polymer to reconstitute the polymer and form a mixture, wherein, upon mixing, the protein solution and the polymer cross-link to form a material composition. The method applies the material composition to a tissue region. The biocompatible polymer can comprise, e.g., poly(ethylene glycol) PEG. The protein solution can comprise, e.g., albumin.
Abstract:
Systems and methods convey a closure material into a catheter, e.g., to seal a puncture site in a blood vessel. The closure material comprises a mixture of first and second components, which, upon mixing, undergo a reaction to form solid closure material composition. The first component may be a lyophilized polyethylene glycol (PEG) material contained within a vial. The second component may be a buffered albumin solution plus water contained within a syringe. An applicator provides easy and effective mixing of the components and delivery of the mixture to the puncture site.