Abstract:
Provided is an imaging device including row drive unit having a first storage unit that stores and outputs a first signal for a readout from the pixels on an associated row, a second storage unit that stores and outputs a second signal for an operation for causing the photoelectric conversion element on an associated row to be reset to a charge accumulation state, and a third storage unit that stores and outputs a third signal for maintaining the photoelectric conversion element on an associated row in a charge accumulation state or a reset state based on the first signal output from the first storage unit and the second signal output from the second storage unit.
Abstract:
Provided is an imaging device including row drive unit having a first storage unit that stores and outputs a first signal for a readout from the pixels on an associated row, a second storage unit that stores and outputs a second signal for an operation for causing the photoelectric conversion element on an associated row to be reset to a charge accumulation state, and a third storage unit that stores and outputs a third signal for maintaining the photoelectric conversion element on an associated row in a charge accumulation state or a reset state based on the first signal output from the first storage unit and the second signal output from the second storage unit.
Abstract:
The imaging apparatus has a plurality of pixels each of which has a plurality of photoelectric conversion units; generates a plurality of first combined signals obtained by combining signals based on electric charges of photoelectric conversion units in one side with each other, and a plurality of second signals obtained by combining signals based on electric charges of the plurality of photoelectric conversion units with each other; and outputs a part of the first combined signals out of the plurality of first combined signals.
Abstract:
A driving method of an imaging device, and a driving method of an imaging system set the number of unit cells based on signals output from a plurality of unit cells in a phase difference detection area within an imaging area to a number larger than the number of unit cells based on signals output from a plurality of unit cells in a range other than the phase difference detection area within the imaging area.
Abstract:
A driving method of an imaging device, and a driving method of an imaging system set the number of unit cells based on signals output from a plurality of unit cells in a phase difference detection area within an imaging area to a number larger than the number of unit cells based on signals output from a plurality of unit cells in a range other than the phase difference detection area within the imaging area.
Abstract:
A solid-state imaging device includes a photon detector that operates in a Geiger mode and outputs an output signal in accordance with incidence of a photon, a quench element that causes the photon detector to transition to a non-Geiger mode in accordance with the output signal, a control unit that, when the photon detector transitions from a Geiger mode to a non-Geiger mode, switches the quench element from a detection mode, in which the quench element is in a relatively low resistance state and the photon detector detects a photon, to a hold mode, in which the quench element is in a relatively high resistance state and holds the output signal, and a signal processing circuit that performs a predetermined process on the output signal.
Abstract:
In a photoelectric conversion apparatus, the number of differential transistors in which ON states thereof overlap with one another is increased when the number of the amplification transistors in which ON states thereof overlap with one another is increased.
Abstract:
A driving method of an imaging device, and a driving method of an imaging system set the number of unit cells based on signals output from a plurality of unit cells in a phase difference detection area within an imaging area to a number larger than the number of unit cells based on signals output from a plurality of unit cells in a range other than the phase difference detection area within the imaging area.
Abstract:
In a period in which a pixel signal of another pixel is read out from the pixel, a transistor connected to a floating diffusion region of a pixel not performing reading out of a pixel signal from the pixel is turned off.
Abstract:
The present disclosure relate to photoelectric conversion apparatus and imaging system. The photoelectric conversion apparatus has a plurality of pixels arranged in rows and columns, and each configured to generate a signal by photoelectric conversion, a plurality of holding capacitors arranged correspondingly to the respective columns of the plurality of pixels, and configured to hold signals based on the pixels, a first output line, a second output line, a first switch arranged between the holding capacitor and the first output line, a second switch arranged between the holding capacitor and the second output line, and a column selecting line configured to control the second switch, wherein a wiring structure of a portion at which the column selecting line intersects the first output line is different from a wiring structure of a portion at which the column selecting line intersects the second output line.