Abstract:
A pump has a plurality of pumping elements, each being independently responsive to an actuation signal from a controller. The controller is programmed to maintain a desired pressure at the pump discharge, monitor the fluid pressure at the pump discharge, compare the fluid pressure with the desired fluid pressure to determine a pressure error, provide commands to sequentially actuate the pumping elements when the pressure error is within a threshold range, and provide commands to actuate more than one of the plurality of pumping elements simultaneously, such that more than one pumped amounts of fluid are delivered simultaneously at the pump discharge, when the pressure error droops outside of the threshold range.
Abstract:
A pressure regulator is disclosed having a body, a valve seat dividing a cavity of the body into first and second portions, and an end stop movable against a bias to selectively engage the valve seat and isolate the first and second portions. The pressure regulator may also have a first inlet port in the first portion, a first outlet port in the second portion and in fluid communication with the first portion via the valve seat, and a second inlet port in the second portion. The fuel system may also have a valve element in the second portion and movable against a spring bias based on a pressure difference between an open position and a restricted position against the end stop. The fuel system may additionally have an actuator biased to urge the valve element toward the second position and selectively actuated to move away from the valve element.
Abstract:
A method of operating an engine is disclosed. The method includes estimating an operational status of a cryogenic pump selectively driven by the engine. The cryogenic pump is configured to pressurize a liquefied gaseous fuel. The method also includes estimating a power requirement of the cryogenic pump. The method further includes determining whether the engine is operating on a lug curve. Moreover, the method includes providing additional fuel to the engine in order to increase an engine power beyond the lug curve prior to an operation of the cryogenic pump. The increase in engine power is at least equal to the power requirement of the cryogenic pump.
Abstract:
A bearing arrangement for a wobble plate piston pump includes first, second, third, and fourth bearing assemblies. The first and second bearing assemblies support the drive shaft portion for rotation within the housing about the central longitudinal axis, while the third and fourth bearing assemblies support the load plate for rotation relative to the offset shaft portion of the shaft. The second bearing assembly is distally disposed from the first, the third disposed distally to second, and the fourth disposed distally to third. The fourth bearing assembly is the most distally disposed bearing assembly along the shaft.
Abstract:
A pump has a plurality of pumping elements, each being independently responsive to an actuation signal from a controller. The controller is programmed to maintain a desired pressure at the pump discharge, monitor the fluid pressure at the pump discharge, compare the fluid pressure with the desired fluid pressure to determine a pressure error, provide commands to sequentially actuate the pumping elements when the pressure error is within a threshold range, and provide commands to actuate more than one of the plurality of pumping elements simultaneously, such that more than one pumped amounts of fluid are delivered simultaneously at the pump discharge, when the pressure error droops outside of the threshold range.
Abstract:
A pump has a pump body and at least first and second pumping elements, each pumping element including a piston defining a head-end and a rod-end. The pump receives a pressurized fluid at an inlet, and returns fluid through a drain outlet. A hydraulic distributor operates to fluidly connect the head end of an extending piston to the pressurized fluid, and the rod end of the extending piston to the drain outlet. The hydraulic distributor further connects the rod-end of a retracting piston to the drain outlet, and the rod-end of one or more retracting pistons to the drain or to a return pressure, which is lower than an extending pressure.
Abstract:
A dual fuel system for an engine is disclosed. The dual fuel system may have a first fuel supply providing a first fuel to the engine, and a second fuel supply providing a second fuel. The dual fuel system may also have a regulator configured to pass the second fuel from the second fuel supply to the engine, with the regulator also in fluid communication with the first fuel supply. The dual fuel system may further have a damper in fluid communication with the first fuel supply and an output of the regulator.
Abstract:
A dual fuel common rail system may be operated in a regular mode in which a relatively large charge of gaseous fuel is ignited by compression igniting a relatively small injection quantity of liquid diesel fuel. The dual fuel system may be operated in a single fuel limp home mode in which liquid diesel fuel is injected at higher pressures. Over pressurization of the gaseous fuel side of the fuel system due to leaked liquid fuel is avoided by regularly injecting leaked liquid fuel, but not gaseous fuel, from the gaseous nozzle outlet set during the limp home mode of operation.
Abstract:
A dual fuel common rail system may be operated in a regular mode in which a relatively large charge of gaseous fuel is ignited by compression igniting a relatively small injection quantity of liquid diesel fuel. The dual fuel system may be operated in a single fuel limp home mode in which liquid diesel fuel is injected at higher pressures. Over pressurization of the gaseous fuel side of the fuel system due to leaked liquid fuel is avoided by regularly injecting leaked liquid fuel, but not gaseous fuel, from the gaseous nozzle outlet set during the limp home mode of operation.
Abstract:
A cryogenic fluid pump includes a plurality of pumping elements, each of the plurality of pumping elements having an actuator portion that is associated with and configured to selectively activate one end of a pushrod in response to a command by an electronic controller, an activation portion associated with an opposite end of the pushrod, and a pumping portion associated with the activation portion. For each of the plurality of pumping elements, the pumping portion is activated for pumping a fluid by the activation portion, which activation portion is activated by the actuator portion. The electronic controller is configured to selectively activate each of the plurality of pumping elements such that a flow of fluid from the cryogenic fluid pump results from continuous activations of the plurality of pumping elements at selected dwell times between activations of successive pumping elements.