Abstract:
A physiological sensor has light emitting sources, each activated by addressing at least one row and at least one column of an electrical grid. The light emitting sources are capable of transmitting light of multiple wavelengths and a detector is responsive to the transmitted light after attenuation by body tissue.
Abstract:
Embodiments of the present disclosure include a handheld multi-parameter patient monitor capable of determining multiple physiological parameters from the output of a light sensitive detector capable of detecting light attenuated by body tissue. For example, in an embodiment, the monitor is capable of advantageously and accurately displaying one or more of pulse rate, plethysmograph data, perfusion quality, signal confidence, and values of blood constituents in body tissue, including for example, arterial carbon monoxide saturation (“HbCO”), methemoglobin saturation (“HbMet”), total hemoglobin (“Hbt”), arterial oxygen saturation (“SpO2”), fractional arterial oxygen saturation (“SpaO2”), or the like. In an embodiment, the monitor displays a line associated with a patient wellness level.
Abstract:
Embodiments of the present disclosure include a handheld multi-parameter patient monitor capable of determining multiple physiological parameters from the output of a light sensitive detector capable of detecting light attenuated by body tissue. For example, in an embodiment, the monitor is capable of advantageously and accurately displaying one or more of pulse rate, plethysmograph data, perfusion quality, signal confidence, and values of blood constituents in body tissue, including for example, arterial carbon monoxide saturation (“HbCO”), methemoglobin saturation (“HbMet”), total hemoglobin (“Hbt”), arterial oxygen saturation (“SpO2”), fractional arterial oxygen saturation (“SpaO2”), or the like. In an embodiment, the monitor displays a line associated with a patient wellness level.
Abstract:
Embodiments of the present disclosure include a handheld multi-parameter patient monitor capable of determining multiple physiological parameters from the output of a light sensitive detector capable of detecting light attenuated by body tissue. For example, in an embodiment, the monitor is capable of advantageously and accurately displaying one or more of pulse rate, plethysmograph data, perfusion quality, signal confidence, and values of blood constituents in body tissue, including for example, arterial carbon monoxide saturation (“HbCO”), methemoglobin saturation (“HbMet”), total hemoglobin (“Hbt”), arterial oxygen saturation (“SpO2”), fractional arterial oxygen saturation (“SpaO2”), or the like. In an embodiment, the monitor displays a line associated with a patient wellness level.
Abstract:
Confidence in a physiological parameter is measured from physiological data responsive to the intensity of multiple wavelengths of optical radiation after tissue attenuation. The physiological parameter is estimated based upon the physiological data. Reference data clusters are stored according to known values of the physiological parameter. At least one of the data clusters is selected according to the estimated physiological parameter. The confidence measure is determined from a comparison of the selected data clusters and the physiological data.
Abstract:
A calibration system is disclosed for calibrating a first physiological monitoring device using a second physiological monitoring device. The first physiological monitor measures a first indication of a physiological parameter. The second physiological monitor measures a second indication of the physiological parameter. The first and second indications are used to calibrate the first physiological monitoring device.
Abstract:
A pulse oximetry sensor includes reusable and disposable elements. To assemble the sensor, members of the reusable element are mated with assembly mechanisms of the disposable element. The assembled sensor provides independent movement between the reusable and disposable elements.
Abstract:
An embodiment of the present disclosure provides a noninvasive optical sensor or probe including disposable and reusable components. The assembly of the disposable and reusable components is straightforward, along with the disassembly thereof. During application to a measurement site, the assembled sensor is advantageously secured together while the componentry is advantageously properly positioned.
Abstract:
Confidence in a physiological parameter is measured from physiological data responsive to the intensity of multiple wavelengths of optical radiation after tissue attenuation. The physiological parameter is estimated based upon the physiological data. Reference data clusters are stored according to known values of the physiological parameter. At least one of the data clusters is selected according to the estimated physiological parameter. The confidence measure is determined from a comparison of the selected data clusters and the physiological data.
Abstract:
A physiological sensor has light emitting sources, each activated by addressing at least one row and at least one column of an electrical grid. The light emitting sources are capable of transmitting light of multiple wavelengths and a detector is responsive to the transmitted light after attenuation by body tissue.