Abstract:
In accordance with the present disclosure, an adaptive noise cancellation system may include a controller. The controller may be configured to determine a degree of convergence of an adaptive coefficient control block for controlling an adaptive response of the adaptive noise cancellation system. The controller may enable adaptation of the adaptive coefficient control block if the degree of convergence of the adaptive response is below a particular threshold and disable adaptation of the adaptive coefficient control block if the degree of convergence of the adaptive response is above a particular threshold, such that when the adaptive noise cancellation system is adequately converged, the adaptive noise cancellation system may conserve power by disabling one or more of its components.
Abstract:
A personal audio device including multiple output transducers for reproducing different frequency bands of a source audio signal, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal for each of the transducers from at least one microphone signal that measures the ambient audio to generate anti-noise signals. The anti-noise signals are generated by separate adaptive filters such that the anti-noise signals cause substantial cancelation of the ambient audio at their corresponding transducers. The use of separate adaptive filters provides low-latency operation, since a crossover is not needed to split the anti-noise into the appropriate frequency bands. The adaptive filters can be implemented or biased to generate anti-noise only in the frequency band corresponding to the particular adaptive filter. The anti-noise signals are combined with source audio of the appropriate frequency band to provide outputs for the corresponding transducers.
Abstract:
A personal audio device, such as a wireless telephone, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal from a reference microphone signal that measures the ambient audio and an error microphone signal that measures the output of an output transducer plus any ambient audio at that location and injects the anti-noise signal at the transducer output to cause cancellation of ambient audio sounds. A processing circuit uses the reference and error microphone to generate the anti-noise signal, which can be generated by an adaptive filter operating at a multiple of the ANC coefficient update rate. Downlink audio can be combined with the high data rate anti-noise signal by interpolation. High-pass filters in the control paths reduce DC offset in the ANC circuits, and ANC coefficient adaptation can be halted when downlink audio is not detected.
Abstract:
In accordance with embodiments of the present disclosure, an adjustable equalization filter may have a response that generates an equalized source audio signal from a source audio signal to account for effects of changes in an electro-acoustical path of the source audio signal to a transducer. An equalizer coefficient control block may adapt the response of the adjustable equalization filter in response to changes in a response of a secondary path estimate filter for modeling the electro-acoustical path of a source audio signal through the transducer, wherein a response of the secondary path estimate filter is adapted in conformity with an error microphone signal indicative of the acoustic output of the transducer.
Abstract:
A personal audio device includes a sidetone circuit with one or more adjustable coefficients that generates a sidetone signal from the output of a first microphone. The sidetone circuit has one or more adjustable coefficients for altering the relationship between the first microphone signal and the sidetone signal. The personal audio device also includes a transducer for reproducing playback audio and the sidetone signal at an ear of a listener and a second microphone for measuring the output of the transducer as delivered to the ear of the listener. The sidetone circuit includes a calibration circuit for estimating a response of the second microphone to the sidetone signal and adjusting the coefficient of the sidetone circuit according to the estimated response.
Abstract:
In accordance with the present disclosure, an adaptive noise cancellation system may include a controller. The controller may be configured to determine a degree of convergence of an adaptive coefficient control block for controlling an adaptive response of the adaptive noise cancellation system. The controller may enable adaptation of the adaptive coefficient control block if the degree of convergence of the adaptive response is below a particular threshold and disable adaptation of the adaptive coefficient control block if the degree of convergence of the adaptive response is above a particular threshold, such that when the adaptive noise cancellation system is adequately converged, the adaptive noise cancellation system may conserve power by disabling one or more of its components.
Abstract:
A personal audio device, such as a headphone, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal from a reference microphone signal that measures the ambient audio, and the anti-noise signal is combined with source audio to provide an output for a speaker. The anti-noise signal causes cancellation of ambient audio sounds that appear at the reference microphone. A processing circuit uses the reference microphone to generate the anti-noise signal, which can be generated by an adaptive filter. The processing circuit also models an acoustic leakage path from the transducer to the reference microphone and removes elements of the source audio appearing at the reference microphone signal due to the acoustic output of the speaker. Another adaptive filter can be used to model the acoustic leakage path.
Abstract:
A personal audio device, such as a wireless telephone, generates an anti-noise signal from a microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. The microphone measures the ambient environment, but also contains a component due to the transducer acoustic output. An adaptive filter is used to estimate the electro-acoustical path from the noise-canceling circuit through the transducer to the at least one microphone so that source audio can be removed from the microphone signal. A determination of the relative amount of the ambient sounds present in the microphone signal versus the amount of the transducer output of the source audio present in the microphone signal is made to determine whether to update the adaptive response.
Abstract:
A personal audio device including earspeakers, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal for each earspeaker from at least one microphone signal that measures the ambient audio, and the anti-noise signals are combined with source audio to provide outputs for the earspeakers. The anti-noise signals cause cancellation of ambient audio sounds at the respective earspeakers. A processing circuit uses the microphone signal(s) to generate the anti-noise signals, which can be generated by adaptive filters. The processing circuit controls adaptation of the adaptive filters such that when the processing circuit detects that either of the earspeakers are off-ear, a gain applied to the anti-noise signals is reduced.
Abstract:
In accordance with systems and methods of the present disclosure, a method may include receiving an error microphone signal indicative of an acoustic output of a transducer and ambient audio sounds at the acoustic output of the transducer. The method may also include generating an anti-noise signal to reduce the presence of the ambient audio sounds at the acoustic output of the transducer based at least on the error microphone signal. The method may further include generating an equalized source audio signal from a source audio signal by adapting, based at least on the error microphone signal, a response of the adaptive playback equalization system to minimize a difference between the source audio signal and the error microphone signal. The method may additionally include combining the anti-noise signal with the equalized source audio signal to generate an audio signal provided to the transducer.