Abstract:
An example method is provided in one example embodiment and may include communicating a message for a group of one or more user equipment (UE) from a machine type communication-interworking function (MTC-IWF) to a packet data network gateway (PGW), wherein the message includes a group identity (ID) associated with the group of one or more UE; communicating the message from the PGW to one or more serving gateways (SGWs); and communicating the message from each of the one or more SGWs to each of the one or more UE of the group of the one via a tunnel for each of the one or more UE.
Abstract:
An example method is provided in one example embodiment and may include determining that a user equipment (UE) is approximately stationary for a threshold period of time within a particular geographic area based, at least in part, on a radio access network (RAN) node to which the UE is attached; notifying the UE that the UE has been associated with the particular geographic area; and transitioning the UE into an idle mode from an active mode, wherein the transitioning is performed without notifying a core network that the UE has transitioned to the idle mode. Determining that the UE is approximately stationary can include monitoring mobility signaling from the UE and comparing an amount of time that the UE has been attached to the RAN node with a threshold period of time. The core network can be notified when the UE moves out of the particular geographic area.
Abstract:
A method is provided in one example embodiment and may include determining a location for a user equipment (UE); determining whether at least one user data plane entity servicing at least one packet data network (PDN) flow for the UE is to be changed based, at least in part, on the location of the UE; if at least one user data plane entity is to be changed, selecting at least one new user data plane entity to service the at least one PDN flow for the UE; allocating a new PDN Internet Protocol (IP) address for the at least one PDN flow for which the user data plane entity is changed; and communicating the new PDN IP address to the UE.
Abstract:
Systems, methods, and media for location reporting at a charging area level granularity are provided. The method includes detecting at a mobility management entity (MME) a transition of a user equipment (UE) from a first cell to a second cell to obtain at least a cell identifier. The method also includes determining at the MME whether the UE transition constitutes a transition from a first charging area to a second charging area using the cell identifier by comparing the cell identifier to a charging area configuration, wherein the second charging area includes a plurality of cells that are served by at least one eNodeB. The method further includes providing to a policy server a report of the UE transition, if it is determined that the UE transition constitutes a transition from the first charging area to the second charging area.
Abstract:
An example method is provided in one example embodiment and includes receiving, by a user equipment device, a list including at least one location identifier associated with an area for location reporting and an area identifier identifying the area for location reporting. The method further includes receiving a location identifier broadcast by a wireless network element, and determining whether the broadcast location identifier matches the at least one location identifier associated with the area for location reporting. The method further includes sending a location reporting message by the user equipment device to a first network node when it is determined that the broadcast location identifier matches the at least one location identifier associated with the area for location reporting. The location reporting message is indicative of the user equipment device either entering or exiting the area for location reporting.
Abstract:
A method for mobile management entity (MME) selection includes receiving at a base transceiver station (BTS) a message from each of multiple MMEs including information for advertising functionalities of each of the MMEs. The functionalities include at least one type of communications session supported by each of the MMEs. The method also includes receiving at the BTS a message from a user equipment (UE) to request for a communications session. The request message includes session type information indicating a type of session requested by the UE. At least one of the MMEs is capable of serving the requested type of session. The method further includes generating a list of candidate MMEs capable of serving the requested type of communications session from the MMEs by matching the session type information with the capability information, and selecting a serving MME from the list based on the information relating to the advertised functionalities.
Abstract:
In an example, there is disclosed a computing apparatus, having: a processor; a memory; a network interface to communicatively couple to a mobile data network; and an interconnection and routing function (IRF) server engine to: receive an incoming Control plane message from a source network function (NF) via the network interface; examine a header of the incoming Control plane message to determine a destination NF of the Control plane message; and route the Control plane message to the destination NF.
Abstract:
The present disclosure is directed at systems, methods and media for mitigating congestion for roamers in a wireless access network. In some embodiments, Radio Access Network (RAN) congestion information is reported from a base station to a RAN Congestion Awareness Function (RCAF) of a visited network. The RCAF can mitigate congestion by controlling Quality of Service (QoS) parameters for roaming User Equipment (UE) in a congested cell. The RCAF can further communicate with the Mobility Management Entity (MME) of the visited cell and the Policy Charging and Rules Function (PCRF) of the UE's home network. The RCAF can relieve congestion for roamers without informing the home network of the congestion at the cell.
Abstract:
A method for mobile management entity (MME) selection includes receiving at a base transceiver station (BTS) a message from each of multiple MMEs including information for advertising functionalities of each of the MMEs. The functionalities include at least one type of communications session supported by each of the MMEs. The method also includes receiving at the BTS a message from a user equipment (UE) to request for a communications session. The request message includes session type information indicating a type of session requested by the UE. At least one of the MMEs is capable of serving the requested type of session. The method further includes generating a list of candidate MMEs capable of serving the requested type of communications session from the MMEs by matching the session type information with the capability information, and selecting a serving MME from the list based on the information relating to the advertised functionalities.
Abstract:
An example method is provided in one example embodiment and may include communicating a message for a group of one or more user equipment (UE) from a machine type communication-interworking function (MTC-IWF) to a packet data network gateway (PGW), wherein the message includes a group identity (ID) associated with the group of one or more UE; communicating the message from the PGW to one or more serving gateways (SGWs); and communicating the message from each of the one or more SGWs to each of the one or more UE of the group of the one via a tunnel for each of the one or more UE.