Abstract:
A combustion system may include one or more electrodes configured for the application of a charge, voltage, and/or electric field to a flame. Combustion system may include a burner, combustion chamber, and ancillary equipment. In order to avoid high voltage discharges from the charged flame to ancillary equipment, combustion system may employ an insulating material between burner and flame, as well as safety insulation subsystems that may eliminate electrical path to ground. These safety insulation subsystems may include a battery or a motor-generator power conversion system, for example.
Abstract:
A combustion system outputs fuel gas from a plurality of fuel ejectors toward a forward end of a burner wall and preheats a perforated flame holder by sustaining combustion reaction of the fuel gas at combustion zone between the burner wall and a perforated flame holder. The combustion system then outputs fuel gas from the fuel ejectors onto the perforated flame holder and sustains a combustion reaction of the fuel gas within the perforated flame holder.
Abstract:
Nitrogen oxides (NOx) generated by a fuel burner is reduced by anchoring the flame to a conductive anchor disposed a lift distance from a fuel nozzle, using a voltage applied to the flame.
Abstract:
A gas turbine afterburner includes a gutter electrode that helps to hold an afterburner flame. A charge source applies a majority charge to be carried by a turbine exhaust gas. Electrical attraction between the majority charge and the gutter electrode helps to hold the afterburner flame.
Abstract:
A selective catalytic reduction system (SCR) or selective non-catalytic reduction (SNCR) system include a reagent charging apparatus configured to apply one or more electrical charges to a NOx reducing reagent. The electrical charges enhance mixing of the reagent with fluids carrying NOx and/or enhance reactivity of the reagent with NOx.
Abstract:
In an embodiment, a combustion system includes a burner, at least one charging electrode, flame anchoring electrode(s), and at least one voltage power supply. The burner is configured to discharge fuel into a combustion volume in which the fuel and an oxidizer are ignited to generate a flame. The charging electrode is positioned proximate to the flame. The charging electrode provides charges to the flame to generate a charged flame. The flame anchoring electrode(s) are disposed adjacent to the burner and proximate to a base portion of the charged flame. The voltage power supply is electrically coupled to each of the flame anchoring electrode(s) and the charging electrode. The at least one voltage power supply applies one or more electrical potentials to each of the flame anchoring electrode(s) so that the charged flame is anchored at a predetermined location.
Abstract:
A pulsed electrical charge or voltage may be applied to a pulsed fuel stream or combustion reaction supported by the fuel stream. The pulsed charge or voltage may be used to affect fuel mixing, flame trajectory, heat transfer, emissivity, reaction product mix, or other physical property of the combustion reaction.
Abstract:
A method for operating a combustion system includes outputting fuel and oxidant from a fuel and oxidant source onto a flame holder. The method further includes sustaining a combustion reaction of the fuel and the oxidant within the perforated flame holder.
Abstract:
According to an embodiment, a combustion system is provided, which includes a nozzle configured to emit a diverging fuel flow, a flame holder positioned in the path of the fuel flow and that includes a plurality of apertures extending therethrough, and a preheat mechanism configured to heat the flame to a temperature exceeding a startup temperature threshold.
Abstract:
A low NOx burner is configured to support a combustion reaction at a selected fuel mixture by anchoring a flame at a conductive flame anchor responsive to current flow between charges carried by the flame and the conductive flame anchor.