Abstract:
Components, systems, and methods for reducing location-dependent destructive interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration are disclosed. Interference is defined as issues with received MIMO communications signals that can cause a MIMO algorithm to not be able to solve a channel matrix for MIMO communications signals received by MIMO receivers in client devices. These issues may be caused by lack of separation (i.e., phase, amplitude) in the received MIMO communications signals. Thus, to provide amplitude separation of received MIMO communications signals, multiple MIMO transmitters are each configured to employ multiple transmitter antennas, which are each configured to transmit in different polarization states. In certain embodiments, one of the MIMO communications signals is amplitude adjusted in one of the polarization states to provide amplitude separation between received MIMO communications signals. In other embodiments, multiple transmitter antennas in a MIMO transmitter can be offset to provide amplitude separation.
Abstract:
Wideband digital distributed communications systems (DCSs) employing reconfigurable digital signal processing circuit for scaling supported communications services are disclosed. The DCS includes a head-end unit that includes front end downlink signal processing circuit to receive and distribute downlink communications signals for communications services (i.e., communications bands) to remote units. The remote units also include front end uplink signal processing circuits to receive uplink communications signals to be distributed to the head-end unit. The front end signal processing circuits are either equipped with broadband filters, or such filters are eliminated, to allow the DCS to be scaled to pass added communications bands. The front end processing circuits include analog-to-digital conversion (ADC) circuits for converting received analog communications signals into digital communications signals so that the digital communications signals can be processed by digital signal processing circuit that can flexibly be configured and reconfigured to support the added communications bands.
Abstract:
Components, systems, and methods for reducing location-dependent destructive interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration are disclosed. Interference is defined as issues with received MIMO communications signals that can cause a MIMO algorithm to not be able to solve a channel matrix for MIMO communications signals received by MIMO receivers in client devices. These issues may be caused by lack of separation (i.e., phase, amplitude) in the received MIMO communications signals. Thus, to provide amplitude separation of received MIMO communications signals, multiple MIMO transmitters are each configured to employ multiple transmitter antennas, which are each configured to transmit in different polarization states. In certain embodiments, one of the MIMO communications signals is amplitude adjusted in one of the polarization states to provide amplitude separation between received MIMO communications signals. In other embodiments, multiple transmitter antennas in a MIMO transmitter can be offset to provide amplitude separation.
Abstract:
Components, systems, and methods for reducing location-dependent destructive interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration are disclosed. Interference is defined as issues with received MIMO communications signals that can cause a MIMO algorithm to not be able to solve a channel matrix for MIMO communications signals received by MIMO receivers in client devices. These issues may be caused by lack of separation (i.e., phase, amplitude) in the received MIMO communications signals. Thus, to provide amplitude separation of received MIMO communications signals, multiple MIMO transmitters are each configured to employ multiple transmitter antennas, which are each configured to transmit in different polarization states. In certain embodiments, one of the MIMO communications signals is amplitude adjusted in one of the polarization states to provide amplitude separation between received MIMO communications signals. In other embodiments, multiple transmitter antennas in a MIMO transmitter can be offset to provide amplitude separation.
Abstract:
Embodiments of the disclosure relate to a multi-source same-cell wireless distribution system (WDS) with dynamic source adaptation. In this regard, the WDS includes multiple remote units each configured to distribute a downlink communications signal having identical cell identification in a respective coverage area. The WDS includes a signal distribution circuit communicatively coupled to multiple signal sources. The signal distribution circuit can dynamically determine a selected coverage cell among multiple coverage cells having a client device load higher than a predefined load threshold. Accordingly, the signal distribution circuit can redistribute the defined source capacity of a selected signal source among the multiple signal sources exclusively to the selected coverage cell. By dynamically distributing more capacity to the selected coverage cell with higher client device load, it is possible to increase data throughput, thus helping to provide improved user experience in the selected coverage cell.
Abstract:
Embodiments of the disclosure relate to a massive multiple-input multiple-output (M-MIMO) wireless distribution system (WDS) and related methods for optimizing the M-MIMO WDS. In one aspect, the M-MIMO WDS includes a plurality of remote units each deployed at a location and includes one or more antennas to serve a remote coverage area. At least one remote unit can have a different number of the antennas from at least one other remote unit in the M-MIMO WDS. In another aspect, a selected system configuration including the location and number of the antennas associated with each of the remote units can be determined using an iterative algorithm that maximizes a selected system performance indicator of the M-MIMO WDS. As such, it may be possible to optimize the selected system performance indicator at reduced complexity and costs, thus helping to enhance user experiences in the M-MIMO WDS.
Abstract:
Embodiments of the disclosure relate to a massive multiple-input multiple-output (M-MIMO) wireless distribution system (WDS) and related methods for optimizing the M-MIMO WDS. In one aspect, the M-MIMO WDS includes a plurality of remote units each deployed at a location and includes one or more antennas to serve a remote coverage area. At least one remote unit can have a different number of the antennas from at least one other remote unit in the M-MIMO WDS. In another aspect, a selected system configuration including the location and number of the antennas associated with each of the remote units can be determined using an iterative algorithm that maximizes a selected system performance indicator of the M-MIMO WDS. As such, it may be possible to optimize the selected system performance indicator at reduced complexity and costs, thus helping to enhance user experiences in the M-MIMO WDS.
Abstract:
Components, systems, and methods for reducing location-dependent destructive interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration are disclosed. Interference is defined as issues with received MIMO communications signals that can cause a MIMO algorithm to not be able to solve a channel matrix for MIMO communications signals received by MIMO receivers in client devices. These issues may be caused by lack of separation (i.e., phase, amplitude) in the received MIMO communications signals. Thus, to provide amplitude separation of received MIMO communications signals, multiple MIMO transmitters are each configured to employ multiple transmitter antennas, which are each configured to transmit in different polarization states. In certain embodiments, one of the MIMO communications signals is amplitude adjusted in one of the polarization states to provide amplitude separation between received MIMO communications signals. In other embodiments, multiple transmitter antennas in a MIMO transmitter can be offset to provide amplitude separation.