Abstract:
Described herein are articles and methods of making articles, including a transparent composite film having a fiber filler embedded in a polymer network. The polymer network of the transparent composite film is a cured, cross-linked matrix including a first and second structure segment. The structure segments may contribute or impart improved properties in the transparent composite film. The select structure segments can provide increased modulus and reduced glass transition temperature thereby allowing for a desirable balance of flexibility and rigidity in the transparent composite film. The improved transparent composite film is suitable for many applications including use in display devices.
Abstract:
A non-radiation curable reinforcing agent for optical fiber coatings and coating compositions. The reinforcing agent includes structurally flexible soft block segments and structurally rigid hard block segments. The soft block segments and hard block segments include urethane or urea linkages and act as strengthening additives in optical fiber coatings. Strength reinforcement occurs through interactions of the reinforcing agent with the polymeric network formed from curable components of the coating composition. Interactions include physical entanglements and hydrogen bonding. Soft block segments include block units that may include high molecular weight polyol linkages and soft block segments include block units that may include low molecular weight alkylene linkages. Coatings that include the reinforcing agents exhibit low Young's modulus, high tensile strength, and low glass transition temperatures and are suitable for use as primary coatings in optical fibers.
Abstract:
Coating compositions that include acrylic polymers as reinforcing agents. The coating compositions are radiation-curable and include a multifunctional acrylate component, an acrylic monomer diluent, an acrylic polymer, and a photoinitiator. The acrylic polymer is not radiation-curable and lacks hydrogen-donor groups, urea groups, and urethane groups. The acrylic polymer is non-reactive and does not chemically bond to the crosslinked network formed by curing the acrylate components. Instead, the acrylic polymer reinforces the cured network through physical interactions. Representative acrylic polymers include (meth)acrylates that lack substituents with hydrogen-donor, urea, and urethane groups.
Abstract:
Coating compositions that include acrylic polymers as reinforcing agents. The coating compositions are radiation-curable and include a multifunctional acrylate component, an acrylic monomer diluent, an acrylic polymer, and a photoinitiator. The acrylic polymer is not radiation-curable and lacks hydrogen-donor groups, urea groups, and urethane groups. The acrylic polymer is non-reactive and does not chemically bond to the crosslinked network formed by curing the acrylate components. Instead, the acrylic polymer reinforces the cured network through physical interactions. Representative acrylic polymers include (meth)acrylates that lack substituents with hydrogen-donor, urea, and urethane groups.
Abstract:
A low cost composition that cures rapidly and which is suitable for coating an optical fiber comprises at least one ethylenically unsaturated monomer; at least one photoinitiator; and at least one non-radiation-curable polar polymer having pendent groups that facilitate low energy chemical bonding, hydrogen bonding, dipolar interactions or other interactions with radical compounds formed during polymerization of the monomer. The non-radiation-curable polar polymer(s) are inexpensive and reduce and/or eliminate the need for expensive urethane acrylate oligomers, without sacrificing properties, and while achieving rapid cure speeds.
Abstract:
Laminates can comprise a substrate and a film. The film can comprise a film thickness from about 5 micrometers to about 400 micrometers and a tri-block copolymer comprising a first block positioned between two second blocks. The first block can be grafted with a first functional group. The first block can comprise a first glass transition temperature of about 0° C. or less. The two second blocks can each comprise a glass transition temperature of about 50° C. or more. A combined weight of the two second blocks can be from about 10 wt % to about 50 wt % of the tri-block copolymer. The film can comprise a refractive index from about 1.48 to about 1.55. Methods of forming a laminate can comprise disposing a film over a substrate. Methods can further comprise heating the film and the substrate to a first temperature and then a second temperature.
Abstract:
Optically transparent fiber glass cover substrates for electronic displays. The cover substrates include an optically transparent fiberglass composite layer including a fiberglass layer embedded in a matrix material and an optically transparent hard-coat layer bonded to a top surface of the optically transparent fiberglass composite layer. A bottom surface of the optically transparent fiberglass composite layer may define a bottommost exterior surface of a cover substrate. The bottommost exterior surface of a cover substrate may be disposed over a display surface of an electronic display to protect the display surface from damage.
Abstract:
Described herein are articles and methods of making articles, including a transparent composite film having a fiber filler embedded in a polymer network. The polymer network of the transparent composite film is a cured, cross-linked matrix including a first and second structure segment. The structure segments may contribute or impart improved properties in the transparent composite film. The select structure segments can provide increased modulus and reduced glass transition temperature thereby allowing for a desirable balance of flexibility and rigidity in the transparent composite film. The improved transparent composite film is suitable for many applications including use in display devices.
Abstract:
Described herein are articles and methods of making articles, including a transparent composite film having a fiber filler embedded in a polymer network and further including a hard coating. The polymer network of the film is a cured, cross-linked matrix. The hard coating is a cross-linked aromatic urethane acrylate oligomer and a photoinitiator and provides a flexible protective layer that maintains good hardness, puncture-resistance and scratch-resistance.
Abstract:
A method of synthesizing urethane-free polyfunctional acrylate compounds. The method includes reaction of a polyol with acrylic acid in the presence of an inhibitor. A catalyst may also be present. The catalyst may be an acid and the inhibitor may be a substituted phenol compound. Excess acid may be removed by adding a salt and excess water may be removed by adding a drying agent. The reaction converts alcohol groups of the polyol to acrylate groups to provide a radiation-curable polyfunctional acrylate compound. The reaction is applicable to polyols generally and provides a scalable high yield process for forming urethane-free polyfunctional acrylates over a wide range of molecular weights. Coatings made from the acrylate products exhibit modulus and tensile strength characteristics favorable for primary fiber coatings.