Abstract:
A method of making a glass sheet comprises laminating a high CTE core glass to a low CTE clad glass at high temperatures and allowing the laminate to cool creating compressive stress in the clad glass, and then ion exchanging the laminate to increase the compressive stress in the outer near surface regions of the clad glass. The core glass may include ions that exchange with ion in the clad glass to increase the compressive stress in inner surface regions of the clad glass adjacent to the clad glass/core glass interfaces. The glass laminate may be formed and laminated using a fusion forming and laminating process and fusion formable and ion exchangeable glass compositions.
Abstract:
A method includes heating a glass preform having a plurality of glass layers and drawing the glass preform in a distal direction to form a drawn glass sheet extending distally from the glass preform and having the plurality of glass layers. The drawn glass sheet is thinner than the glass preform. The drawn glass sheet can be rolled onto a collection spool. At least a portion of a glass layer can be removed from the drawn glass sheet. An exemplary glass sheet includes a first glass layer, a second glass layer adjacent to the first glass layer, and a thickness of at most about 0.1 mm. An exemplary ion exchanged glass sheet includes a thickness of at most about 0.1 mm and a surface layer that is under a compressive stress and extends into an interior of the glass sheet to a depth of layer.
Abstract:
Push roll spools for engaging and driving softened glass tubes over a shaping mandrel. A push roll spool for use in processing a glass tube may comprise a base having first and second axially spaced ends, and multiple sheets of heat resistant material disposed on the base between the axially spaced ends, forming an axially extending stack. The stack may have a circumferential, generally U-section groove having a profile defined by the peripheral edges of multiple said sheets having different diameters. The U-section groove may be sized to engage and drive a glass tube. The U-section groove may have two contact areas at which to engage and drive a glass tube. The heat resistant material may comprise mica or a mica composition, for example mica paper or ceramic fiber millboard.
Abstract:
A glass substrate with modified surface regions is disclosed. The glass substrate includes a first side and an opposite second side, an alkali-containing bulk disposed between the first and second sides, and a first alkali-depleted region formed in the alkali-containing bulk on the first side. The first alkali-depleted region defines at least a portion of a first topographical feature. The first topographic feature includes a height that extends in a first direction from a base portion of the first topographical feature to an outermost portion of the first topographical feature. The first direction is oriented parallel to a thickness of the glass substrate between the first and second sides. The first topographic feature also includes a width that extends in a second direction between at least two, spaced apart wall portions of the first topographical feature. The second direction is oriented normal to the first direction.
Abstract:
A method for forming a structure includes providing a glass or glass ceramic tubular structure (110) having an interior (150) and exterior surface (160) and at least a partially closed end region (140); heating the glass or glass ceramic tubular structure (110) to at least its softening point by: providing a laser beam; directing the laser beam (130) down the interior surface of the glass or glass ceramic tubular structure (110), at least some of the laser beam (130) directed at an angle greater than a predetermined incidence angle; and the laser beam (130) impinging on the closed end region (140) where at least some of the laser beam (130) is absorbed by the closed end region (140) of the glass or glass ceramic tubular structure; and moving at least one of: the glass or glass ceramic tubular structure or the end region relative to each other to form at least a two-dimensional shape from the glass or glass ceramic tubular structure.
Abstract:
A apparatus for making a three-dimensional object (glass, glass ceramic or ceramic) that includes: a gripping fixture 102a having a grip surface or a pedestal 102 having a build surface 130, the grip or build surface configured to hold an end of a contiguous, preformed material 106, such as a fiber or a ribbon; a feed system 100 having a feed outlet 118 positioned above the grip or build surface, the feed system configured to feed the contiguous, preformed material into a build zone between the feed outlet and the grip or build surface; and a laser delivery system 134 arranged to direct at least one laser beam through the furnace 132 and into the build zone to form a hot spot 126 in the build zone; and a positioning system 120 arranged to effect relative motion between the grip or build surface and the feed outlet. In some implementations, the apparatus for making a 3D object can also include a furnace 132 enclosing the build zone and the feed outlet.
Abstract:
An apparatus for forming glass tubing is described. The apparatus for forming glass tubing comprises an endless former with an outer surface and an inner passage defining an inner surface. The apparatus for forming glass tubing further comprises two chambers from which molten glass may flow. One chamber flows molten glass to the outer surface of the endless former and another chamber flows molten glass to the inner surface of the endless former. The two flows of molten glass meet at the bottom of the former to form glass tubing.
Abstract:
A method of manufacturing a laminated glass article having a first clad layer, a second clad layer, and a core layer between the first clad layer and the second clad layer, by exposing an edge of the core layer. An etchant can be applied to the edge of the laminated glass article to form the recess. The recess can then be filled.
Abstract:
A method of making a glass sheet comprises laminating a high CTE core glass to a low CTE clad glass at high temperatures and allowing the laminate to cool creating compressive stress in the clad glass, and then ion exchanging the laminate to increase the compressive stress in the outer near surface regions of the clad glass. The core glass may include ions that exchange with ion in the clad glass to increase the compressive stress in inner surface regions of the clad glass adjacent to the clad glass/core glass interfaces. The glass laminate may be formed and laminated using a fusion forming and laminating process and fusion formable and ion exchangeable glass compositions.
Abstract:
A method of printing a 3D object includes feeding one or more preformed materials from a feed outlet into a build zone in which a hot spot is located and using the hot spot to selectively heat the one or more preformed materials to a viscous state. Object layers are formed by depositing portions of the preformed materials on a build surface, or on another object layer on the build surface, while effecting relative motion between the build surface and the feed outlet.