Abstract:
A glass article including any one or several of SiO2, Al2O3, B2O3, Li2O, SnO2 and a fusion line. The glass article can also include a liquidus viscosity less than or equal to 100 kP. In some embodiments, the glass article includes, on an oxide basis, from 60 mol % to 74 mol % SiO2, from 7 mol % to 18 mol % Al2O3, from 3 mol % to 16 mol % B2O3, from 0 mol % to 6 mol % Na2O, from 0 mol % to 5 mol % P2O5, from 5 mol % to 11 mol % Li2O, less than or equal to 0.2 mol % SnO2.
Abstract:
A glass manufacturing apparatus includes a forming device that is configured to produce a glass ribbon that includes a width extending between a first edge and an opposite second edge of the glass ribbon. A lower draw roll apparatus includes a first pair of draw rolls arranged and configured to draw the first edge of the glass ribbon within a lower draw zone along the draw path. The lower draw roll apparatus is located between a setting zone and a separation location where the glass ribbon is separated to form a glass sheet.
Abstract:
Glass manufacturing apparatuses with cooling devices and methods for using the same are disclosed. In one embodiment, an apparatus for forming a glass web from molten glass includes an enclosure and pulling rolls that cooperate to draw a glass web in a draw direction rotatably positioned in an interior of the enclosure. A cooling device for extracting heat from the glass web is in fluid communication with a cooling fluid source and includes an actively cooled flapper disposed in the interior of the enclosure that is movable to facilitate varying the heat extraction. The actively cooled flapper serves as a heat sink in the interior of the enclosure and the cooling fluid extracts heat from the actively cooled flapper to remove heat from the glass web and the enclosure.
Abstract:
Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs) and active matrix organic light emitting diode displays (AMOLEDs). In accordance with certain of its aspects, the glasses possess good dimensional stability as a function of temperature.
Abstract:
A method and apparatus for manufacturing a glass article includes flowing a glass ribbon through a transition region, heating the glass ribbon with a heating mechanism housed in the transition region, cooling the glass ribbon with a cooling mechanism housed in the transition region, wherein the cooling mechanism extends between the heating mechanism and the glass ribbon, and shielding the glass ribbon with a shielding mechanism that extends between the cooling mechanism and at least one of first and second bead regions of the glass ribbon.
Abstract:
An apparatus for making a glass sheet including a forming apparatus, a transition member, and a heat transfer device. The forming apparatus forms a glass ribbon from a supply of molten glass. The transition member encloses the glass ribbon adjacent the forming apparatus, and defines an interior space through which the glass ribbon passes. The heat transfer device is disposed within the interior space, and comprises a tube and a fin. The tube defines an exterior surface and an interior passage. The fin projects from the exterior surface. With this construction, the heat transfer device functions to extract heat radiated by the glass ribbon while minimizing the formation of flow vortices.
Abstract:
An apparatus for making a glass ribbon can include a heating plane including a heat footprint facing the surface of an edge director. A projection of the heat footprint in a resultant direction of the heating plane within the heat footprint can intersect the surface of the edge director. In further embodiments, a fusion draw method of making a glass ribbon can include radiating heat within a heat footprint of a heating plane toward a surface of an edge director. At least a portion of the heating plane within the heat footprint can face the surface of the edge director so that the surface of the edge director is intersected with heat radiating from the heat footprint of the heating plane.
Abstract:
A glass article including any one or several of SiO2, Al2O3, B2O3, Li2O, SnO2 and a fusion line. The glass article can also include a liquidus viscosity less than or equal to 100 kP. In some embodiments, the glass article includes, on an oxide basis, from 60 mol % to 74 mol % SiO2, from 7 mol % to 18 mol % Al2O3, from 3 mol % to 16 mol % B2O3, from 0 mol % to 6 mol % Na2O, from 0 mol % to 5 mol % P2O5, from 5 mol % to 11 mol % Li2O, less than or equal to 0.2 mol % SnO2.
Abstract:
Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs) and active matrix organic light emitting diode displays (AMOLEDs). In accordance with certain of its aspects, the glasses possess good dimensional stability as a function of temperature.
Abstract:
A non-polished glass wafer, a thinning system, and a method for using the non-polished glass wafer to thin a semiconductor wafer are described herein. In one embodiment, the glass wafer has a body (e.g., circular body) including a non-polished first surface and a non-polished second surface substantially parallel to each other. In addition, the circular body has a wafer quality index which is equal to a total thickness variation in micrometers plus one-tenth of a warp in micrometers that is less than 6.0.