Abstract:
A control system for a dual gaseous and liquid fuel engine includes an electronic controller configured to receive data from a plurality of sensing mechanisms indicative of an error in a plurality of different engine operating parameters. The electronic controller is further configured to determine a highest priority one of the errors, and limit substitution of the gaseous fuel responsive to a normalized value thereof.
Abstract:
A fuel management system for an engine having a common fuel rail. The fuel management system includes means to regulate air supply and fuel supply. A control unit is provided to determine a maximum allowable fuel mass flow supplied from the fuel rail, based on the air supply and a predetermined air-fuel ratio for the operating parameters of the engine. The control unit calculates an allowable upper limit of rail pressure based on the determined maximum allowable fuel mass flow. The control unit regulates the fuel supply based on the determined allowable upper limit of the rail pressure.
Abstract:
An internal combustion engine having an exhaust log structure onto which a plurality of turbochargers is connected, each turbocharger having a turbine connected to the exhaust log structure and having an inlet fluidly connectable to a respective one of the plurality of outlet ports, an exhaust valve disposed at a turbine outlet such that the flow of exhaust gas out of the turbine is fluidly blocked, and an actuator associated with the exhaust valve and operating to move the exhaust valve from a closed position to an open position and vice versa. An electronic controller provides a command to the actuator to move the exhaust valve between the open and closed positions and is programmed to selectively open two one or more exhaust valves based on an operating condition of the engine.
Abstract:
A method for controlling an air-fuel ratio (AFR) in an engine powered by a gaseous fuel having an unknown composition may comprise receiving an assumed gas species composition for the gaseous fuel, and determining an assumed lower heating value (LHV) for the assumed gas species composition. The method may further comprise determining a perceived lower heating value (LHV) for the gaseous fuel based on a perceived gas mass flow and a gas energy flow for the gaseous fuel, and updating the assumed gas species composition until the assumed LHV and the perceived LHV are aligned. The method may further comprise determining a desired AFR and an airflow necessary to provide the desired AFR using the aligned gas species composition and a desired lambda (λ), and adjusting an air system controller of the engine to provide the airflow.
Abstract:
The disclosure provides a method to operate an engine system. The method begins by determination of a current NOx value. If the current NOx value is greater than a first predetermined NOx target, an air-fuel ratio (AFR) set-point is adjusted by a first predetermined value in towards a rich AFR. Upon detection of the current NOx value below the first predetermined NOx target, a first average of NOx values for a first predetermined time is determined. The AFR set-point is adjusted by a second predetermined value and a second average of NOx values for a second predetermined time is determined. A delta NOx value is determined as a difference between the first average and the second average and compared with a second predetermined NOx target. The AFR set-point is determined when the delta NOx value is below the second predetermined NOx target.
Abstract:
A method to control a wastegate valve actuator by determining a NOx deadband with hysteresis for an engine controller is disclosed. This NOx deadband defines an outer band and an inner band. In this method, a NOx sensor keep sensing the NOx level in the exhaust gases and accordingly the engine controller sends commands to the wastegate valve actuator. At the NOx level less than inner band and the outer band, engine controller remains at deactivated state. When the NOx level goes outside the outer band, the engine controller sends dither command to the wastegate valve actuator and continues to send the dither command until the NOx level does not reach inside the NOx inner band. This method improves life of the wastegate valve assembly as separate activating and deactivating bands for the engine controller ensures less command fluctuations for the wastegate valve actuator.
Abstract:
A fuel injection timing management system for a dual fuel engine is configured to determine a first diesel injection timing corresponding to a first mode of operation of the engine system and a second diesel injection timing corresponding to a second mode of operation. The system may further determine a direction of change in a mode of operation of the engine system, and selectively perform a change in the diesel injection timing from the first diesel injection timing to the second diesel injection timing at a first rate of transition or a second rate of transition, based on the direction of change in a mode of operation of the engine system.
Abstract:
An engine system includes a fuel supply unit configured to supply fuel into a combustion chamber. The engine system includes a fuel supply unit to regulate the supply of fuel into an inlet port via a fuel rail and an air supply unit configured to supply compressed air into the combustion chamber. A control system is configured to receive operating conditions of the engine system. Further, the control system includes a detector component configured to generate a control signal indicative of a start-up condition of an engine system. A switching component of the controller receives the control signal indicative of the start-up condition of the engine system from the detector component and further transmits a fuel supply control signal to the fuel valve based on an air-fuel ratio error signal, and transmit an air supply control signal to the choke valve based on an engine speed error signal.
Abstract:
A method for controlling emissions in an engine system including an internal combustion engine and a catalytic converter with oxygen storage capacity. The method includes determining a real time oxygen storage level of the three-way catalytic converter based on a real time exhaust gas flow rate and a real time measured upstream oxygen quantity with respect to the catalytic converter. Further, maintaining an optimal oxygen storage level of the three-way catalytic converter for different types of fuel used in the internal combustion engine.
Abstract:
A method for controlling and engine system with a plurality of turbochargers. At least one of the plurality of turbochargers has a turbine valve, a compressor valve, and actuators operable to change the position of the turbine valve. The method comprises controlling the actuator based on the presence of a transient event or a steady state event. During a transient event an engine control module can control the actuators to change the turbine valve to opened and closed positions and the turbine valve to a closed position based on the comparison between a corrected mass flow per turbocharger to a mass flow threshold.