Abstract:
An engine device (21) including: an intake manifold (67) configured to supply air into a cylinder (77); an exhaust manifold (44) configured to output exhaust gas from the cylinder (77); a gas injector (98) which mixes a gaseous fuel with the air supplied from the intake manifold 67; and a main fuel injection valve (79) configured to inject a liquid fuel into the cylinder (77) for combustion. At the time of switching the operation mode from one to the other between a gas mode and a diesel mode, an instant switching to the diesel mode is executed when the engine rotation number is determined to approach the upper limit value which leads to an emergency stop of the engine device.
Abstract:
Embodiments of the subject matter disclosed herein relate to controlling engine operating points and power for full throttle command in an off-highway vehicle, such as a diesel electric haul truck, to increase fuel efficiency. In one example, a system includes an engine and a controller. The controller is configured to determine a target engine horsepower and associated target engine speed, command the engine to operate at a first engine speed above the target engine speed, adjust a load placed on the engine to reach the target engine speed, and command the engine to operate at a second engine speed to reach the target engine horsepower.
Abstract:
A traveling control section of a traveling vehicle is configured to effect a normal operation to control an output of an engine when a vehicle speed is below a set vehicle speed, such that the engine output may correspond to an operation amount of an accelerator operating tool and to effect an output suppressing operation when the vehicle speed is equals to or more than the set vehicle speed, such that the vehicle speed may stay below the set vehicle speed, irrespectively of the operation amount of the accelerator operating tool. A fuel ratio in an air-fuel ratio in the output suppressing operation is set smaller than a fuel ratio in an air-fuel ratio in the normal operation.
Abstract:
A generator set for a transport refrigeration unit that is operable at a first frequency and a second frequency. The generator set includes a generator and a prime mover. The generator set is controlled by an electronic control unit (ECU) that is coupled to a controller. The ECU is configured to monitor the engine operation condition to obtain an engine operation condition value; whereas the controller is configured to receive the engine operation condition value and compare the value with an engine operation condition threshold. When the engine operation condition value, for example, exceeds the engine operation condition threshold, the controller instructs the ECU to operate the engine at a first speed; and when the engine operation condition value, for example, is below the engine operation condition threshold, the controller instructs the ECU to operate the engine at a second speed that is slower than the first speed.
Abstract:
A method and apparatus controlling the fuel-to-air ratio of a fuel and air mixture supplied to an operating engine includes the steps of determining a first engine speed before enleanment of the mixture, determining a second engine speed near or at the end of a period of enleanment of the mixture, and after ending the enleanment, determining whether the engine speed recovers within a predetermined range of the first engine speed and if so determining a delta speed difference between the first and second speeds and using this delta speed difference as a factor in determining a change in the fuel-to-air ratio of the fuel mixture supplied to the engine.
Abstract:
A method for adjusting the rotational speed of an internal combustion engine of a road-building machine which, in addition to a traction drive, has hydraulic motors which are connected to the internal combustion engine and which serve for driving working assemblies, in which method the rotational speed is adjusted as a function of the present power demand of the working assemblies, characterized in that the hydraulic motors are operated using fixed-displacement pumps, and residual volume flows presently to be discharged are reduced by flow valves for hydraulic motors of active working assemblies, for which purpose the rotational speed of the internal combustion engine is automatically adapted during working operation.
Abstract:
When single-injection control is executed, processing for initiating full injection is executed at a crank angle immediately before initiation of each fuel injection among crank angles at crank angle intervals of 30°. When multi-injection control is executed, processing for initiating the fuel injection is executed at a crank angle immediately before the initiation of the each fuel injection among crank angles at crank angle intervals of 10°.
Abstract:
A power system is disclosed for use with a mobile machine having a work tool. The power system may have an engine, a first input device configured to generate a first signal indicative of an operator-desired output of the engine, a second input device configured to generate a second signal indicative of an operator-desired movement of the work tool, and a controller in communication with the engine, the first input device, and the second input device. The controller may be configured to adjust fueling of the engine based on the first signal and based on a desired speed of the engine during a first mode of operation, and to adjust fueling of the engine based on the first signal and a desired torque of the mobile machine during a second mode of operation. The controller may be further configured to selectively switch operation of the machine between the first and second modes based on the second signal.
Abstract:
A control apparatus controls an actual output engine RPM close to a target RPM that is based on an operational amount of an operating member independent of engine load fluctuations. The control apparatus temporarily increases the target RPM relative to a basic target RPM previously determined according to the operational amount. An acceleration control gradually increases the target RPM equal to or greater than a predetermined increase rate. When the temporary increase and acceleration controls are performed simultaneously, and the temporary increase control is later canceled, an increase rate of the target RPM is set equal to or greater than an increase rate of a basic target RPM corresponding to the operational amount so the target RPM does not become lower than a present RPM. The target RPM and the basic target RPM are thereby gradually matched with each other.
Abstract:
A method for adjusting the rotational speed of an internal combustion engine of a road-building machine which, in addition to a traction drive, has hydraulic motors which are connected to the internal combustion engine and which serve for driving working assemblies, in which method the rotational speed is adjusted as a function of the present power demand of the working assemblies, characterized in that the hydraulic motors are operated using fixed-displacement pumps, and residual volume flows presently to be discharged are reduced by flow valves for hydraulic motors of active working assemblies, for which purpose the rotational speed of the internal combustion engine is automatically adapted during working operation.