Abstract:
The present invention relates to a data processing device, method, and computer program for data sharing among multiple users. The device includes a sensor module collecting data by using at least one of a camera sensor, a distance sensor, a microphone array, a motion capture sensor, an environment scanner, and a haptic device; a memory module storing and controlling the data collected by the sensor module; and a network module transmitting the data stored in the memory module to a remote location, or receiving predetermined data from the remote location, wherein the memory module stores the stored data and the predetermined data as data in a standardized format according to data features.
Abstract:
A head-mounted device (HMD) for enabling a 3D drawing interaction in a mixed-reality space is provided. The HMD includes a frame section, a rendering unit providing a specified image, a camera unit attached to the frame section to pick up an image for rendering, and a control unit configured to, when the camera unit picks up an image of a specified marker, perform a calibration process based on position information of the image of the marker displayed on a screen of the HMD and to, when there is a motion of an input device for interaction with a virtual whiteboard, obtain position information of an image of the input device displayed on a virtual camera screen based on position information of the whiteboard.
Abstract:
The present invention relates to an apparatus for creating a tactile sensation through non-invasive brain stimulation by using ultrasonic waves. The apparatus includes: an ultrasonic transducer module for inputting the ultrasonic waves to stimulate a specific part of the brain of a specified user non-invasively through at least one ultrasonic transducer unit; a compensating module for acquiring information on a range of tactile perception areas in the brain of the specified user and compensating properties of ultrasonic waves to be inputted to the specified user through the ultrasonic transducer unit by referring to the acquired information thereon; and an ultrasonic waves generating module for generating ultrasonic waves to be inputted to the specified user through the ultrasonic transducer unit by referring to a compensating value decided by the compensating module.
Abstract:
A method for displaying a shadow of a 3D virtual object, includes steps of: (a) acquiring information on a viewpoint of a user looking at a 3D virtual object displayed in a specific location in 3D space by a wall display device; (b) determining a location and a shape of a shadow of the 3D virtual object to be displayed by referring to information on the viewpoint of the user and the information on a shape of the 3D virtual object; and (c) allowing the shadow of the 3D virtual object to be displayed by at least one of the wall display device and a floor display device by referring to the determined location and the determined shape of the shadow of the 3D virtual object. Accordingly, the user is allowed to feel the accurate sense of depth or distance regarding the 3D virtual object.
Abstract:
A method makes a first and a second devices support for interactions with respect to a 3D object. The method includes steps of: (a) allowing the first device to acquire information on physical 3D object and information on images of a user; (b) allowing the second device to receive the information relating to the physical 3D object and the information on images of the user of the first device, then display virtual 3D object corresponding to the physical 3D object and display 3D avatar of the user of the first device; (c) allowing the first device to transmit information on manipulation of the user of the first device regarding the physical 3D object and information on images of the user of the first device who is manipulating the physical 3D object and then allowing the second device to display the 3D avatar of the user of the first device.
Abstract:
The present invention provides a method for planning a path for an autonomous walking humanoid robot that takes an autonomous walking step using environment map information, the method comprising: an initialization step of initializing path input information of the autonomous walking humanoid robot using origin information, destination information, and the environment map information; an input information conversion step of forming a virtual robot including information on the virtual robot obtained by considering the radius and the radius of gyration of the autonomous walking humanoid robot based on the initialized path input information; a path generation step of generating a path of the virtual robot using the virtual robot information, the origin information S, the destination information G, and the environment map information; and an output information conversion step of converting the path of the autonomous walking humanoid robot based on the virtual robot path generated in the path generation step.
Abstract:
A local watch skew compensation device of the present invention is a client device which is synchronized with the other client device to provide a time-aware service including: a local time providing unit which supplies first local time data and second local time data in accordance with a local clock; a media scheduling unit which receives first media data and second media data from the other client device, schedules first playout time of the first media data using the first local time data, and schedules second playout time of the second media data using the second local time data; and a skew monitoring unit which requests global time data to a global time server when a difference between the first playout time and the second playout time exceeds a skew threshold value, and the first media data and the second media data are different types of media data.
Abstract:
Provided is a parallel fieldbus network-based motor control system including one or more slave modules each including a basic processor and an auxiliary processor that control one or more motors, and a master module including at least one master controller that generates command data for controlling each of the one or more motors. The master module further includes a basic network master controller, an auxiliary network master controller and a wireless network master controller, and the slave module includes a basic network slave controller, an auxiliary network slave controller and a wireless network module.
Abstract:
Disclosed is an apparatus for outputting a virtual keyboard, the apparatus including: a virtual keyboard image output unit determining coordinates of a virtual keyboard image by using hand information of a user and outputting the virtual keyboard image; a contact recognition unit determining a contact state by using collision information between a virtual physical collider associated with an end point of a user's finger and a virtual physical collider associated with each virtual key of the virtual keyboard image; a keyboard input unit providing multiple input values for a single virtual key; and a feedback output unit outputting respective feedback for the multiple input values. Accordingly, input convenience and efficiency may be provided by outputting the virtual keyboard in a three dimensional virtual space and reproducing an input method using a keyboard form that is similar to the real world.
Abstract:
An apparatus for providing haptic force feedback to a user interacting with a virtual object in a virtual space is provided. The apparatus includes a force-feedback provision unit providing a sensation of touch arising from an interaction with the virtual object to at least a portion of the user's body. A processor unit performs (i) receiving at least one of a first force-feedback control data generated based on vector information on a motion of the at least a portion of the user's body and information on the virtual object and a second force-feedback control data generated based on image information the information on the virtual object from the external terminal, or (ii) generating at least one of the first and second force-feedback control data.