Abstract:
Novel tools and techniques are provided for implementing self-organizing mobile networks (“SOMNETs”) of drones and platforms. In various embodiments, a computing system might receive first data from each of a plurality of vehicles; might receive second data from each of a plurality of platforms; might analyze the first data to determine a status of each vehicle; and might analyze the second data to determine a status of each platform. Based at least in part on the analyzed first and second data, the computing system might generate at least one of first control instructions to at least one first vehicle of the plurality of vehicles or second control instructions to at least one first platform of the plurality of platforms that respectively cause the at least one first vehicle to perform one or more first actions or cause the at least one first platform to perform one or more second actions.
Abstract:
Novel tools and techniques might provide for implementing remote application access, and, in some cases, by instantiating an application or service close to the intended recipient or user of the application or service, from a networking perspective. A network might provide connectivity between a first computer and a second computer. A file (comprising an application and data) might be transmitted, over the network, from the first computer. A node in the network, which might be on a path between the first and second computers, might determine that the file contains the application and the data, and, based on such determination, might capture the file (before the second computer can receive it). An instance of the application might be instantiated on a compute surface in the network as a service for the second computer, such that the compute surface can operate on the data with the instance of the application.
Abstract:
Disclosed embodiments include a multi-network gateway system providing one or more third-party telecommunications service providers access to a third-party network interface across an otherwise proprietary access network maintained by a primary telecommunications service provider. Specifically, one embodiment includes an access network provided by a primary telecommunications service provider in communication with a multi-network access gateway. One subset of telecommunications information conveyed across the access network is provided to a customer of the primary telecommunications service provider. Another subset of telecommunications information conveyed across the access network is provided to a third-party network interface and to a third-party network, for the use of the third-party telecommunications service provider.
Abstract:
Optical network termination systems, devices and methods including an optical network terminal (ONT) having a processor in communication with an external optical fiber. The ONT processors further in communication with a wireless access point and at least one electrically conductive internal transport medium, both providing for the communication of telecommunication signals with devices located within a customer premises. The wireless access point and in certain instances the processor are back powered over the electrically conductive internal transport medium from AC power within the premises. In certain embodiments, the wireless access point communicates with devices within the premises over a distributed antenna.
Abstract:
Novel tools and techniques are provided for implementing network experience shifting using shared objects. In various embodiments, a network node in a first network might receive, via a first network access device (“NAD”) in a second network, a request from a first user device to establish roaming network access, a first user being associated with a second NAD in the first network and being unassociated with the first NAD. The network node might authenticate the first user, receive customer network telemetry data regarding visited LAN associated with the first NAD via a gateway API, receive service provider network telemetry data via a network API, determine whether the first user is associated with (and authorized to access services accessible by) the second NAD. If so, the network node might configure the visited LAN and/or the first NAD to simulate the interface environment of the user's home LAN and/or the second NAD.
Abstract:
Disclosed embodiments comprise one or more security methods, systems or apparatus suitable to provide additional security to personal property or financial transactions. Embodiments feature a proximity security token which is physically separate from a protected device. A communications link is provided between the proximity security token and the protected device which communications link operates over a limited range. Thus, the presence and active operation of the limited range communications link between the proximity security token and protected device indicates that the protected device has not been lost and stolen. Interruption of the communications link indicates that the protected device may have been lost or stolen causing the commencement of security actions.
Abstract:
Novel tools and techniques might provide for implementing interconnection gateway and/or hub functionalities between two or more network functions virtualization (“NFV”) entities that are located in different networks. In some embodiments, a NFV interconnection gateway (“NFVIG”) might receive a set of network interconnection information from each of two or more sets of NFV entities, each set of NFV entities being located within a network separate from the networks in which the other sets of NFV entities are located. The NFVIG might be located in one of these networks. The NFVIG might abstract each set of network interconnection information, and might establish one or more links between the two or more sets of NFV entities, based at least in part on the abstracted sets of network interconnection information. The NFVIG might provide access to one or more virtualized network functions (“VNFs”) via the one or more links.
Abstract:
Novel tools and techniques might provide for implementing interconnection gateway and/or hub functionalities between two or more network functions virtualization (“NFV”) entities that are located in different networks. In some embodiments, a NFV interconnection gateway (“NFVIG”) might receive a set of network interconnection information from each of two or more sets of NFV entities, each set of NFV entities being located within a network separate from the networks in which the other sets of NFV entities are located. The NFVIG might be located in one of these networks. The NFVIG might abstract each set of network interconnection information, and might establish one or more links between the two or more sets of NFV entities, based at least in part on the abstracted sets of network interconnection information. The NFVIG might provide access to one or more virtualized network functions (“VNFs”) via the one or more links.
Abstract:
Novel tools and techniques providing for the robust wireless distribution of communications signals from a provider to multiple customer premises. Certain embodiments comprise one or more modular communications apparatuses which are located near to customer premises. The modular communications apparatuses features an enclosure which is, at least in part, transparent to radio frequencies. A modular communications apparatus also typically includes one or more communications radios or transmitter/receiver devices within the enclosure. The apparatus also includes at least one and possibly more than one antenna located within the enclosure along with wire or cable-based signal output apparatus.
Abstract:
Novel tools and techniques might provide for implementing customer-based Internet of Things (“IoT”)-transparent privacy functionality. Various methods, systems, and apparatuses might provide connectivity between a network interface device (“NID”) and each of one or more first user devices of a plurality of user devices associated with the customer premises and/or a user who is associated with the customer premises. In some cases, at least one virtual network function (“VNF”) might be sent to each of the one or more first user devices. The NID might restrict, in some cases using the VNF, access by a third party to the information regarding the at least one portion of the at least one of one or more first user devices connected to the network or one or more applications running on one or more first user devices connected to the network.