Abstract:
A process for the fabrication of a fiber-based information display using a lost glass process includes drawing a fiber from a preform composed of at least two different glass compositions, where one of the compositions is a dissolvable glass, and removing the dissolvable glass with a liquid solution to change a cross-sectional shape of the drawn fiber. The lost glass process can be used to create an exposed wire electrode, where the drawn fiber contains a wire electrode that is exposed when the dissolvable glass is removed. The lost glass process can also be used to hold the shape and a tight tolerance of the drawn fiber. The cross-sectional shape of the fibers created using the lost glass process are suitable for use in an information display, such as plasma emissive displays, plasma addressed liquid crystal displays, and field emissive displays.
Abstract:
A method of creating very large flat panel displays uses fiber and tubes containing wire electrodes to create the structure in a panel. However, there are several display types, especially those involving an electro-optic material like a liquid crystal, which require the electric field to be spread across the entire surface of the pixel or fiber. A method disclosed herein uses a conductive layer to spread the voltage applied to the wire electrodes in the fiber across the surface of the fiber. The conductive layer may be capacitively or resistively coupled to the wire electrode. In most display applications, a transparent conductive layer is required. The easiest and most cost effective methods to fabricate a transparent conductive layer use a transparent conductive polymer or carbon nanotubes.
Abstract:
The invention relates to an electronic display that combines the optical function of the display and part of the electronic function of the display into an array of individual fibers. The individual fibers contain a lens or optical function and at least one set of electrodes. Containing the lens function and the address electrode in the same fiber assures alignment of each pixel with its representative lens system and allows for the fabrication of very large three-dimensional, direct view displays. The electronic part of the displays can function as a plasma display (PDP), plasma addressed liquid crystal (PALC) display, field emission display (FED), cathode ray tube (CRT), electroluminescent (EL) display or any similar type of display.
Abstract:
The present invention uses at least one array of complex-shaped fibers that contain at least one wire electrode running the length of the glass structure to fabricate a fluorescent lamp. At least one of the complex-shaped fibers has a complex cross-section that forms a channel, which supports a plasma gas. The array of fibers can be composed flat to form a fluorescent lamp or in a cylindrical or conical shaped fluorescent lamp.
Abstract:
An electronic display is formed using an array of hollow tubes filled with an electrophoretic material sandwiched between two plates. The hollow tubes have either barrier walls or an electrostatic barrier, which restrict the flow of electrophoretic particles within the hollow tubes. The flow of electrophoretic particles over these barriers is controlled using electric fields, which makes it possible to matrix address the electrophoretic displays. Wire electrodes built into the hollow tubes and electrodes on the two plates are used to address the display. The plates are preferably composed of glass, glass-ceramic, polymer/plastic or metal, while the hollow tubes are preferably composed of glass, polymer/plastic or a combination of glass and polymer/plastic. Color is optionally imparted into the display using colored tubes, adding a color coating to the surface of the tubes, or adding the color to the electrophoretic material. Reflectivity within the display is accomplished by using a reflective material to fabricate the tubes, coating the tubes with a reflective material or coating one of the two plates with a reflective material. The display can also function in a transmissive mode by applying an illuminating back to the display.
Abstract:
The invention relates to a field emission display constructed using an array of fibers and an orthogonal array of emitter electrodes. Each fiber in the fiber array contains an extraction electrode, spacer, a high voltage electrode and a phosphor layer. The array of emitter electrodes consists of carbon nanotube emitters attached to conductive electrodes. The emitter electrodes are separated using non-conductive fibers. A getter material in the form of a wire is placed within the array of emitter electrodes to maintain a high vacuum within the display.
Abstract:
A process for frit-sealing together a panel of a fiber-based information display includes assembling the panel and sealing, after the step of assembling, the panel by forcing a glass frit to flow between the two glass plates that comprise the panel using narrow strips of glass. The glass frit-seals the top and bottom glass plates together and covers the wire electrodes at the end of the fibers to dielectrically isolate them from each other. The process of assembling and frit-sealing the panel is particularly suitable for use in an information display, such as plasma emissive displays, plasma addressed liquid crystal displays, and field emissive displays.