摘要:
The present invention provides a semiconductor device capable of preventing deterioration in carrier mobility of a semiconductor layer, which is a quality of the interface between the semiconductor layer and an insulating layer, and a method of manufacturing the semiconductor device. In the semiconductor device, an interface layer is provided between a semiconductor layer made of active polycrystalline silicon and an insulating layer made of silicon oxide. The nitrogen element in silicon nitride diffuses into the semiconductor layer made of active polycrystalline silicon to compensate for lattice strain of the active polycrystalline silicon film, to satisfy the desired quality of the interface between the semiconductor layer and the insulating layer.
摘要:
The present invention provides a thin-film transistor substrate comprising: a gate electrode 40 and a gate insulating film 41 formed on a substrate 36; a semiconductor active film 42 oppositely provided on the gate electrode via the gate insulating film; a pair of ohmic contact films 43 and 44 separately provided on the semiconductor active film; a low-resistance silicon compound film 45 ranging from the ohmic contact films to the gate insulating film so as to cover the ohmic contact films and the portions of the semiconductor active film superposing with the ohmic contact films; and a source electrode 46 and a drain electrode 48 provided on the low-resistance silicon compound film.
摘要:
The present invention provides a thin-film transistor substrate comprising: a gate electrode 40 and a gate insulating film 41 formed on a substrate 36; a semiconductor active film 42 oppositely provided on the gate electrode via the gate insulating film; a pair of ohmic contact films 43 and 44 separately provided on the semiconductor active film; a low-resistance silicon compound film 45 ranging from the ohmic contact films to the gate insulating film so as to cover the ohmic contact films and the portions of the semiconductor active film superposing with the ohmic contact films; and a source electrode 46 and a drain electrode 48 provided on the low-resistance silicon compound film.
摘要:
A source line is directly connected to a source terminal composed of indium zinc oxide in a thin-film transistor substrate. A gate line is directly connected to a gate terminal composed of indium zinc oxide. Alternatively, drain electrodes of thin-film transistors for switching a plurality of pixel electrodes are directly connected to pixel electrodes composed of indium zinc oxide. These configurations do not require a passivation film which is essential for conventional thin-film transistor substrates, and the resulting thin-film transistor substrate can be made by a reduced number of manufacturing steps.
摘要:
A transparent electrically conductive oxide film is composed of a compound oxide containing indium oxide, tin oxide, and zinc oxide and includes a connecting section, in which the tin content is higher than the zinc content at least in connecting section, and at least the connection section has crystallinity. Alternatively, in the transparent electrically conductive oxide film, the atomic percentage of zinc to the total of zinc, indium, and tin is in the range of about 1 at % through about 9 at %, the atomic ratio of tin to zinc is about 1 or more, the atomic percentage of tin to the total of zinc, indium, and tin is about 20 at % or less, and at least a portion thereof has crystallinity. An electronic apparatus provided with such a transparent electrically conductive oxide film as at least a portion of the electric circuit thereof, a target for forming a transparent electrically conductive oxide film, and a method for fabricating a substrate provided with a transparent electrically conductive oxide film are also disclosed.
摘要:
A liquid crystal display of a lateral electric field driving system having a high viewing angle characteristic and a high aperture ratio comprises a pair of substrates disposed with a space therebetween, a liquid crystal filling up the space between the pair of substrates, a plurality of pixel electrodes formed in a plurality of pixel regions on an inner surface of one of the pair of substrates, common electrodes each for creating an electric field of a direction parallel to the inner surface of the substrate in cooperation with each of the plurality of pixel electrodes, and capacitor forming electrodes each formed over and spaced from the pixel electrode so as to form a capacitor in combination with each of the pixel electrodes.
摘要:
A TFT structure having sufficiently low resistance wiring is provided, in which characteristic defects thereof caused by undercuts in a barrier metal layer can be prevented, the undercuts formed in a step for processing a source and a drain electrode composed of copper. The TFT structure of the present invention comprises a gate electrode on a glass substrate, a gate insulation film, a semiconductor active layer disposed on the gate insulation film so as to oppose the gate electrode, ohmic contact layers formed on both edge portions of the semiconductor active layer, and a source and a drain electrode connected to the semiconductor active layer via the respective ohmic contact layers. In addition, the source electrode and the drain electrode are formed of copper, and barrier metal layers are formed on the bottom surfaces of the source electrode and the drain electrode above areas at which the upper surfaces of the respective ohmic contact layers are located.
摘要:
A TFT structure having sufficiently low resistance wiring is provided. The present invention prevents the characteristic defects caused by undercuts in a barrier metal layer. In the prior art, the undercuts are formed by a step for processing a source and a drain electrode composed of copper. The TFT structure of the present invention comprises a gate electrode on a glass substrate, a gate insulation film, a semiconductor active layer disposed on the gate insulation film so as to oppose the gate electrode, ohmic contact layers formed on both edge portions of the semiconductor active layer, and a source and a drain electrode connected to the semiconductor active layer via the respective ohmic contact layers. In addition, the source electrode and the drain electrode are formed of copper. Barrier metal layers are formed on the bottom surfaces of the source electrode and the drain electrode above areas at which the upper surfaces of the respective ohmic contact layers are located.
摘要:
A thin-film transistor comprises a semiconductor unit 60 constituted of a channel formation portion 61 and a source region 63 and a drain region 62 sandwiching the channel formation portion 61 therebetween, a transparent pixel electrode 54 made of indium tin oxide, a drain electrode 57 and a source electrode 58 each made of Cr, Mo, Ta or W, and a gate electrode 68 formed on the channel formation portion via a gate insulating layer 58, wherein the drain region and the source region are, respectively, connected with the electrodes through silicide layers 64, 65 formed by diffusion of the any above-mentioned element. A method for making the transistor and a liquid crystal display device comprising the transistor are also disclosed.
摘要:
The invention intends to provide a TFT having a gate insulating film which has a high dielectric withstand voltage and can ensure a desired carrier mobility in an adjacent semiconductor active film. A gate electrode and a semiconductor active film are formed on a transparent substrate with a gate insulating film, which is formed of two layered insulating films, held between them. The gate insulating film is made up of a first gate insulating film which improves a withstand voltage between the gate electrode and the semiconductor active film, and a second gate insulating film which improves an interface characteristic between the gate insulating film and the semiconductor active film. The first and second gate insulating films are each formed of a SiNx film. The optical band gap of the first gate insulating film has a value in the range of 3.0 to 4.5 eV, and the optical band gap of the second gate insulating film has a value in the range of 5.0 to 5.3 eV.