摘要:
A liquid crystal display device composed of: a first substrate and a second substrates; a liquid crystal layer provided between the first and second substrates; a plurality of pixel regions provided on the surface opposing the second substrate of the first substrate, each of which pixel regions has at least one pixel electrode and a common electrode for cooperatively applying an electric field in a direction along the surface of the first substrate; and a conductive light shielding matrix provided on the surface opposing the first substrate of the second substrate which light shielding matrix has openings each corresponding to a display region of each of the pixel regions and shades non-display regions other than the pixel regions; in which the light shielding matrix and the common electrode are set to substantially the same voltage.
摘要:
A thin film transistor for liquid crystal display device including a gate electrode 42 formed on a transparent substrate 41, an insulation layer 43 formed to cover the upper surface of the transparent substrate and the gate electrode, a semiconductor layer 46 formed on the insulating layer in confrontation with the gate electrode, an etching stopper layer 44 formed on the semiconductor layer and a source electrode 49 and a drain electrode 50 disposed adjacent to each other in confrontation on both the sides of the semiconductor layer over the etching stopper layer, the semiconductor layer and the insulation layer is arranged such that the gate electrode is formed to such a size as to conceal the semiconductor layer from the transparent substrate side and the line width of the source electrode and the drain electrode is made larger than the width of the semiconductor layer along the same direction as the line width. With this arrangement, there can be provided a thin film transistor for liquid crystal display device capable of suppressing the leak current of the semiconductor layer and lowering the off-current of the thin film transistor and a liquid crystal display device including the thin film transistor.
摘要:
A liquid crystal display device composed of: a first substrate and a second substrates; a liquid crystal layer provided between the first and second substrates; a plurality of pixel regions provided on the surface opposing the second substrate of the first substrate, each of which pixel regions has at least one pixel electrode and a common electrode for cooperatively applying an electric field in a direction along the surface of the first substrate; and a conductive light shielding matrix provided on the surface opposing the first substrate of the second substrate which light shielding matrix has openings each corresponding to a display region of each of the pixel regions and shades non-display regions other than the pixel regions; in which the light shielding matrix and the common electrode are set to substantially the same voltage.
摘要:
A liquid crystal display device comprises a first substrate, a second substrate disposed opposite to the first substrate, a liquid crystal sealed in a space between the first and the second substrate, gate lines formed in longitudinal rows on the first. substrate, layer insulating film formed over the gate lines, source lines formed in transverse lines on the layer insulating film so as to form a matrix with the gate lines, thin-film transistors each electrically connected to the gate line and the source line, pixel electrodes formed in regions demarcated by the intersecting gate lines and the source lines and connected to the thin-film transistors, respectively, and gate insulating film interposed between the gate electrodes of the thin-film transistors and an active semiconductor layer. The dielectric constant of the gate insulating film being greater than that of the layer insulating film, and the liquid crystal display has a small parasitic capacitance which increases delay in signal transmission.
摘要:
A source line is directly connected to a source terminal composed of indium zinc oxide in a thin-film transistor substrate. A gate line is directly connected to a gate terminal composed of indium zinc oxide. Alternatively, drain electrodes of thin-film transistors for switching a plurality of pixel electrodes are directly connected to pixel electrodes composed of indium zinc oxide. These configurations do not require a passivation film which is essential for conventional thin-film transistor substrates, and the resulting thin-film transistor substrate can be made by a reduced number of manufacturing steps.
摘要:
A liquid crystal display unit has wider viewing angles and a brighter display. In this display unit, an alignment film is not required to be processed for alignment of a liquid crystal, thereby simplifying the manufacturing process. A first substrate and a second substrate are disposed such that they face each other. A liquid crystal having a negative anisotropy of dielectric constant is provided between the substrates. A common electrode and an alignment film which has a pretilt angle of 90°±1° and which is not rubbed are sequentially disposed on the surface of the first substrate facing the second substrate. A plurality of pixel electrodes are provided on the surface of the second substrate facing the first substrate so as to cover a display area of the liquid crystal. A conductive light-shielding member is disposed on the second substrate and positioned around each of the pixel electrodes in a non-display area of the liquid crystal. The conductive light-shielding member is electrically insulated from the pixel electrode. An alignment film which has a pretilt angle of 90°±1° and which is not rubbed is formed on the pixel electrodes and on the light-shielding members. The conductive light-shielding member is set at substantially the same potential as the common electrode.
摘要:
The invention intends to provide a TFT having a gate insulating film which has a high dielectric withstand voltage and can ensure a desired carrier mobility in an adjacent semiconductor active film. A gate electrode and a semiconductor active film are formed on a transparent substrate with a gate insulating film, which is formed of two layered insulating films, held between them. The gate insulating film is made up of a first gate insulating film which improves a withstand voltage between the gate electrode and the semiconductor active film, and a second gate insulating film which improves an interface characteristic between the gate insulating film and the semiconductor active film . The first and second gate insulating films are each formed of a SiNx film. The optical band gap of the first gate insulating film has a value in the range of 3.0 to 4.5 eV, and the optical band gap of the second gate insulating film has a value in the range of 5.0 to 5.3 eV.
摘要:
A method of manufacturing a thin film transistor comprising the steps of: forming a gate electrode on the surface of a substrate; forming a gate insulation film covering the gate electrode; forming an active semiconductor layer and an ohmic contact layer on the gate insulation film; forming a source/drain electrode made of Cr; and removing a portion of the ohmic contact layer except for the portion in contact with the source/drain electrode by an etching solution, wherein the step of removing the ohmic contact layer is conducted in a state of at least partially or entirely peeling a resist on the source/drain electrode made of Cr.
摘要:
The invention intends to provide a TFT having a gate insulating film which has a high dielectric withstand voltage and can ensure a desired carrier mobility in an adjacent semiconductor active film. A gate electrode and a semiconductor active film are formed on a transparent substrate with a gate insulating film, which is formed of two layered insulating films, held between them. The gate insulating film is made up of a first gate insulating film which improves a withstand voltage between the gate electrode and the semiconductor active film, and a second gate insulating film which improves an interface characteristic between the gate insulating film and the semiconductor active film. The first and second gate insulating films are each formed of a SiNx film. The optical band gap of the first gate insulating film has a value in the range of 3.0 to 4.5 eV, and the optical band gap of the second gate insulating film has a value in the range of 5.0 to 5.3 eV.
摘要:
The present invention provides a semiconductor device capable of preventing deterioration in carrier mobility of a semiconductor layer, which is a quality of the interface between the semiconductor layer and an insulating layer, and a method of manufacturing the semiconductor device. In the semiconductor device, an interface layer is provided between a semiconductor layer made of active polycrystalline silicon and an insulating layer made of silicon oxide. The nitrogen element in silicon nitride diffuses into the semiconductor layer made of active polycrystalline silicon to compensate for lattice strain of the active polycrystalline silicon film, to satisfy the desired quality of the interface between the semiconductor layer and the insulating layer.