Abstract:
A ground fault circuit interrupter device includes a switch module having a reset switch, a control switch mechanically linked to the reset switch, a ground fault detection module, a self-testing module and a tripping module. The switch module controls the electrical connection between the input and output ends of the device. The ground fault detection module detects a leakage current signal at the output end. The self-testing module is coupled to the ground fault detection module and periodically generates a self-test pulse signal which simulates the leakage current signal. The tripping module is electrically coupled to the ground fault detection module and mechanically coupled to the switch module and the control switch, to control the movement of the switch module and the control switch. The control switch, which opens and closes at the same time as the reset switch, controls the power supply to the self-testing module.
Abstract:
A leakage current detection device coupled to AC power supply wires carrying an AC signal, which includes: a leakage current detection circuit including a leakage current detector, the leakage current detection circuit operating during first half-cycles among positive and negative half-cycles of the AC signal to detect a leakage current of the power supply wires and to disconnect the power supply wires from an output side when a leakage current exceeding a first threshold value is detected; and a self-detecting circuit coupled to the leakage current detection circuit, operating during second half-cycles among the positive and negative half-cycles of the AC signal to test whether the leakage current detection circuit is functioning normally.
Abstract:
A power cord having a circuit interrupter such as a leakage current detection interrupter (LCDI) or arc fault circuit interrupter (AFCI), with a detection signal conductor wire in addition to the current carrying wires between the source and the load, and a temperature controlled switch coupled to the detection signal conductor wire on the load side. The temperature controlled switch is affixed to a device under measurement which is associated with the load, and changes its open or closed state when the device overheats. This in turn changes the state of the current flowing in the detection signal conductor wire. In response thereto, the circuit interrupter, which is coupled to the detection signal conductor wire on the source end, interrupts the power supply to the load.
Abstract:
A leakage current detection and interruption device includes a switch module for controlling electrical connection of power supply lines between input and output ends; a leakage current detection module, including first and second leakage current detection lines respectively covering the first and second power supply lines, to detect leakage current thereon and to generate respective first and second leakage signals in response thereto; a signal processing module, coupled to the leakage current detection module to receive the first and/or second leakage signals and to generate a leakage fault signal in response thereto; and a trigger module, coupled to the switch module and the signal processing module, to receive the leakage fault signal and in response thereto, to drive the switch module to disconnect the electrical connection to the output end. The device can detect current leaks on the two power supply lines and is simple, low-cost and reliable.
Abstract:
A leakage current protection device with automatic reset after power outage includes a switch, a power supply module, a leakage current detection module, a self-testing module, a drive control module, and a first reset module. The drive control module drives the switch based on a leakage current signal from the leakage current detection module and/or a self-test fault signal from the self-testing module. The first reset module functions to automatically set the leakage current protection device in a connected state when power resumes after an outage. Another leakage current protection device with manual reset after power outage includes similar components above and also a second reset module, which functions to automatically set the leakage current protection device in a disconnected state when power resumes after an outage; the device can then be manually reset using a reset switch. These two devices can suit different needs of different electrical appliances.
Abstract:
A leakage current detection device connected between a power source and a load, which includes a self-testing or leakage current detection selection trigger unit, for selecting a leakage current detection mode or a self-testing mode; a self-testing unit, for periodically generating a simulated leakage current signal in the self-testing mode; and a leakage current detection unit, for detecting a leakage current signal in the leakage current detection mode and detecting the simulated leakage current signal in the self-testing mode. The selection trigger unit further causes the power source to be disconnected from the load when a leakage current signal is detected, and sends a self-testing result to the self-testing unit depending on whether the leakage current detection unit detects the simulated leakage current signal. The self-testing unit displays an indication of the self-testing result.