Abstract:
The present invention provides polymerization catalyst compositions employing half-metallocene compounds with a heteroatom-containing ligand bound to the transition metal. Methods for making these hybrid metallocene compounds and for using such compounds in catalyst compositions for the polymerization of olefins also are provided.
Abstract:
The present invention provides dual catalyst systems containing a metallocene catalyst and a hydrogen scavenging catalyst, and polymerization processes employing these dual catalyst systems. Due to a reduction in hydrogen levels in the polymerization processes, olefin polymers produced from these polymerization processes may have a higher molecular weight, a lower melt index, and higher levels of unsaturation.
Abstract:
Disclosed herein are ethylene-based polymers generally characterized by a melt index of less than 15 g/10 min, a density from 0.91 to 0.945 g/cm3, a CY-a parameter at 190° C. from 0.2 to 0.6, an average number of long chain branches per 1,000,000 total carbon atoms of the polymer in a molecular weight range of 500,000 to 2,000,000 g/mol of less than 5, and a maximum ratio of ηΕ/3η at an extensional rate of 0.03 sec−1 in a range from 3 to 15. The ethylene polymers have substantially no long chain branching in the high molecular weight fraction of the polymer, but instead have significant long chain branching in the lower molecular weight fraction, such that polymer melt strength and bubble stability are maintained for the fabrication of blown films and other articles of manufacture. These ethylene polymers can be produced using a dual catalyst system containing a single atom bridged metallocene compound with an indenyl group and a cyclopentadienyl group, and an unbridged hafnium metallocene compound with two cyclopentadienyl groups.
Abstract:
Ethylene polymers having a density from 0.908 to 0.925 g/cm3, a melt index from 0.5 to 3 g/10 min, a ratio of Mw/Mn from 2 to 4, a ratio of Mz/Mw from 1.6 to 2.3, a CY-a parameter from 0.45 to 0.6, and an ATREF profile characterized by a single peak at a peak ATREF temperature from 76 to 88° C., and by less than 4.5 wt. % of the polymer eluting above a temperature of 91° C. These ethylene polymers can be used to produce various articles of manufacture, such as blown and cast films with a beneficial combination of high tear resistance and low haze.
Abstract:
Disclosed herein are ethylene-based polymers generally characterized by a melt index of less than 1 g/10 min, a density from 0.93 to 0.965 g/cm3, a CY-a parameter at 190° C. of less than 0.2, an average number of short chain branches per 1000 total carbon atoms of the polymer in a molecular weight range of 400,000 to 600,000 g/mol that is greater than that in a molecular weight range of 40,000 to 60,000 g/mol, and an average number of long chain branches per 1000 total carbon atoms of the polymer in a molecular weight range of 400,000 to 600,000 g/mol that is greater than that in a molecular weight range of 4,000,000 to 6,000,000 g/mol. The ethylene polymers can be used to fabricate pipes, blown films, and blow molded products, and the ethylene polymers can be produced with a dual catalyst system containing a single atom bridged or two carbon atom bridged metallocene compound with two indenyl groups or an indenyl group and a cyclopentadienyl group, and a single atom bridged metallocene compound with a fluorenyl group and a cyclopentadienyl group with an alkenyl substituent.
Abstract:
A method comprising introducing a polymerization feed comprising an α-olefin, a diluent, and a diene to a polymerization system, under polymerization conditions, whereby a polymer product is produced, wherein the diene is present at a level in the range of from about 1 ppm to about 1000 ppm based on the diluent.
Abstract:
Disclosed herein are ethylene-based polymers generally characterized by a density from 0.89 to 0.93 g/cm3, a ratio of Mw/Mn from 3 to 6.5, a Mz from 200,000 to 650,000 g/mol, a CY-a parameter at 190° C. from 0.2 to 0.4, and a reverse short chain branching distribution. The ATREF profile of these polymers can have a high temperature peak from 92 to 102° C., and a low temperature peak from 18 to 36° C. less than that of the high temperature peak. These polymers can have comparable physical properties to that of a metallocene-catalyzed LLDPE, but with improved processability, shear thinning, and melt strength, and can be used in blown film and other end-use applications.
Abstract:
Methods for controlling the productivity of an olefin polymer in a polymerization reactor system using a halogenated hydrocarbon compound are disclosed. The productivity of the polymer can be increased via the addition of the halogenated hydrocarbon compound.
Abstract:
Catalyst systems containing a Ziegler-Natta catalyst component are disclosed. Such catalyst systems can contain a co-catalyst and a supported catalyst containing a fluorided silica-coated alumina, a magnesium compound, and vanadium and/or tetravalent titanium.
Abstract:
Disclosed herein are ethylene-based polymers produced using dual metallocene catalyst systems. These polymers have low densities, high molecular weights, and broad molecular weight distributions, as well as having the majority of the long chain branches in the lower molecular weight component of the polymer, and the majority of the short chain branches in the higher molecular weight component of the polymer. Films produced from these polymers have improved impact and puncture resistance.