Abstract:
Provided are a system and a method for monitoring bearing compression rate of a filler in a coal mine gob area. An ground information processing system, a vibration source control system, and a monitoring system are arranged on the ground according to a buried depth of the filler in the gob area. The vibration source control system generates vibration, and transmits a signal to the filler. The monitoring system on the ground receives different reflected waves according to different elasticities of the fillers under different compaction degrees. Final data is transmitted to the ground information processing system for data processing. The monitoring of the filler starts when the filler is filled in the gob area; the filler is gradually compacted. The filler is monitored until the thickness of the filler does not change. Finally, a bearing compression rate formula is utilized to calculate the bearing compression rate of the filler.
Abstract:
A method for determining a physical similarity simulation material of a solid backfill body is provided. A compaction test is run on a gangue backfill body in a lab, to obtain a ε-σ curve regarding the gangue backfill body in the compaction process. Backfill blocks are made by using a thin wood board, sponge, and a paper sheet in different proportions, and then an unconfined compression test is separately run on the backfill blocks used for physical similarity simulation, to obtain εi-σi curves regarding the backfill blocks in the compression process. A sum of squared errors Σ(εi−ε0)2 is introduced to separately calculate a sum of squared errors of the backfill block and that of the gangue backfill body, and accordingly an error between ε-σ curves regarding the test block and the gangue backfill body is determined. Finally, a backfill block for which the sum of squared errors is less than 0.5 is determined as a physical similarity simulation material of the gangue backfill body. By fabrication and selection of similar materials, the present invention can reduce an error caused by a selected backfilling material during a physical similarity simulation experiment, guaranteeing the accuracy of the physical similarity simulation experiment for solid backfill mining.
Abstract:
Disclosed is a method for designing supporting parameters of a transition support for a mixed mining face of filling and fully-mechanized mining. The method includes: first, determining a total length of a mixed mining working face and a length of a filling section according to requirements of a coal mining production capacity of the mixed mining working face and a filling capacity of the filling section working face; then, establishing a mixed mining numerical model of filling and fully-mechanized mining by using three-dimensional distinct element software, and simulating and calculating a caving height of a roof of a transition section and a stress influence range of the transition section when a filling rate of a mined-out area of the filling section changes; based on a result of numerical simulation and calculation, performing curve fitting according to a correlation coefficient to obtain a functional relationship between the filling rate and the caving height and a functional relationship between the filling rate and the stress influence range of the transition section; and finally designing supporting parameters of a transition support in combination with actual engineering geological parameters. The method can provide a reference for supporting design of a support, and enables a smooth transition between a filling support and a fully-mechanized mining support for a mixed working face, thereby further enriching filling mining theories and expanding the application range of filling mining.
Abstract:
Disclosed is a device for detecting wall abrasion of a solid-filling feeding well and a detection method thereof. The device comprises a well wall abrasion detector, a horizontal displacement meter, a vertical displacement monitor, and a limit guide rod. One end of the limit guide rod is connected to the well wall abrasion detector. The signal output terminal of the well wall abrasion detector is connected to the signal input terminal of the horizontal displacement meter, and the other end of the limit guide rod passes through the vertical displacement monitor for slidable setting. This disclosure mainly utilizes a resistance strain displacement sensor to detect the abrasion and deformation degree of the well wall, determines the position of damages with the vertical displacement monitor, and draws wall abrasion curves by using the obtained data. The device provided is easy to use, has low cost, has high reliability, and can effectively detect the wall abrasion condition of a solid-filling feeding well, thereby providing a basis for ensuring the working efficiency of the feeding well.
Abstract:
In an inclined layered solid-filling mining method in an ultrathick coal layer, tunnels and equipment are arranged according to a solid-filling mining method. An artificial roof for a lower layer is formed by metal meshes and bamboo fences of a first layer a solid-filling mining method. The method is repeated, until the entire ultrathick coal layer is finished. The method is repeated forming additional roofs for subsequent layers.
Abstract:
Provided is a method for radially mining open-pit end slope pressed coal, including: L-shaped or U-shaped main tunnel arrangements, and radially mining; branch tunnels are formed by excavating tunnels in directions perpendicular to or obliquely crossing the main tunnel from the L-shaped or U-shaped main tunnel; In the mining method, a coal mining system and a transportation system both adopt a remote control mode, a tunneling machine excavates a tunnel to product coal; a rubber belt conveyor conveys coal; the main tunnel adopts an exhaust ventilation mode, the branch tunnels adopt a blowing ventilation mode; the lengths of the branch tunnels do not exceed a farthest control distance of a remote control system; the length of each main tunnel needs to ensure that all the end slope pressed coal is mined under the premise that the branch tunnels do not exceed the farthest control distance of the remote control system.
Abstract:
Provided is a base mechanism of a single prop capable of being unloaded at reduced pressure, including a base bottom plate and two wedge-shaped support blocks, where one of the wedge-shaped support blocks serves as a fixed wedge-shaped support block and is welded onto the base bottom plate, and the other of the wedge-shaped support blocks serves as a movable wedge-shaped support block and is connected to the fixed wedge-shaped support block by using a screw rod and a nut. The present invention can effectively unload the single prop at reduced pressure or remove the single prop in a contracted manner, is of a simple structure, is convenient to operate, has a good use effect, overcomes the technical problem that it is difficult to unload a single prop at reduced pressure in this technical feature, and is widely applicable in this technical field.
Abstract:
An apparatus for pre-loading a mechanical constant-resistance single prop includes a rhombic stretchable bracket, a screw rod, a first cylindrical sleeve ring, and a second cylindrical sleeve ring. The screw rod is connected to two opposite apex corners of the rhombic stretchable bracket. A tail end of the screw rod is fixedly connected to one apex corner of the rhombic stretchable bracket. An end head of the screw rod passes through another apex corner of the rhombic stretchable bracket. The remaining two opposite apex corners of the rhombic stretchable bracket are respectively fixedly connected to edges of the first cylindrical sleeve ring and the second cylindrical sleeve ring through connecting rods. The screw rod is threadedly connected to the apex corner of the rhombic stretchable bracket through which the screw rod passes. A method for pre-loading a mechanical constant-resistance single prop is also provided.
Abstract:
A method for removing a hydraulic support for solid filling coal mining includes digging a support removing channel (3) in a coal body (2) in front of the hydraulic support (1), and laying a support removing track (4), then removing the hydraulic support from a coal conveying gateway (11) to a track gateway (5), temporary supporting is carried out by matching a single supporting column with a n-type steel beam before each hydraulic support is removed. A supporting roof is reinforced in time by means of erecting a crib (13) and grouting after each hydraulic support is removed, three grouting pipelines (12) are laid after the supports of the whole work surface are removed, and grouting is carried out in the whole finishing cut space. The roof of the support removing space of the work surface is stable so that the hydraulic supports on the work surface of solid filling coal mining are ensured to be safely and efficiently removed.
Abstract:
Disclosed is a device for detecting wall abrasion of a solid-filling feeding well and a detection method thereof. The device comprises a well wall abrasion detector, a horizontal displacement meter, a vertical displacement monitor, and a limit guide rod. One end of the limit guide rod is connected to the well wall abrasion detector. The signal output terminal of the well wall abrasion detector is connected to the signal input terminal of the horizontal displacement meter, and the other end of the limit guide rod passes through the vertical displacement monitor for slidable setting. This disclosure mainly utilizes a resistance strain displacement sensor to detect the abrasion and deformation degree of the well wall, determines the position of damages with the vertical displacement monitor, and draws wall abrasion curves by using the obtained data. The device provided is easy to use, has low cost, has high reliability, and can effectively detect the wall abrasion condition of a solid-filling feeding well, thereby providing a basis for ensuring the working efficiency of the feeding well.