Abstract:
An LCD panel including a first substrate, a second substrate disposed above the first substrate, a plurality of signal lines disposed on the first substrate, and a plurality of sub-pixel sets arranged between the first substrate and the second substrate. Each sub-pixel set includes a plurality of sub-pixels electrically connected to the corresponding signal lines. Each sub-pixel has at least one alignment pattern located therein. Additionally, the alignment pattern located in one sub-pixel of each sub-pixel set supports between the first substrate and the second substrate as a spacer.
Abstract:
A pixel structure includes at least a pixel electrode, and at least an aligning electrode. The pixel electrode, which has a central opening, is disposed on a substrate. The aligning electrode, which is disposed between the pixel electrode and substrate, includes an aligning part disposed under and corresponding to the central part of the pixel electrode. The aligning voltage applied to the aligning electrode is greater than the pixel voltage applied to the pixel electrode.
Abstract:
A pixel structure of a fringe field switching liquid crystal display (FFS-LCD) and a method for manufacturing the pixel structure are provided. Compared to the conventional method of using seven photolithography-etching processes for manufacturing a pixel structure, the method of the present invention uses only six photolithography-etching processes that save manufacturing costs and time. Furthermore, the pixel structure thereby only comprises two insulating layers, and thus, the light transmittance thereof can be increased in comparison to the conventional pixel structure comprising three insulating layers.
Abstract:
A pixel structure has a pair of substrates, a liquid crystal layer, pixel regions, a patterned organic material layer, and a shielding layer. The liquid crystal layer is disposed between the pair of substrates. The pixel regions are provided on the substrates, and each of the pixel regions is defined by at least two common lines and at least one data line and includes at least two sub-pixel regions. Each pixel region has a pixel electrode which has a main slit adjacent to the border between the two sub-pixel regions. The patterned organic material layer is disposed on one of the substrates and corresponds to one of the sub-pixel regions. The shielding layer is placed corresponding to the main slit. Display panel and electro-optical device which have the pixel structure and the methods for manufacturing them are also disclosed.
Abstract:
A liquid crystal display (LCD) panel including an active device array substrate, an opposite substrate and a liquid crystal layer is provided. The active device array substrate includes a substrate, a plurality of scan lines, a plurality of data lines, and a plurality of pixel units. The scan lines, the data lines and the pixel units are disposed on the substrate. Each of the pixel units is electrically connected to one of the scan lines and one of the data lines correspondingly and crosses over two sides of the corresponding scan line. The opposite substrate includes a plurality of alignment protrusions. The alignment protrusions are located over the scan lines. Besides, the liquid crystal layer is disposed between the opposite substrate and the active device array substrate. The above-mentioned liquid crystal display panel has higher aperture ratio.
Abstract:
A liquid crystal display panel is disclosed. The liquid crystal display panel includes a first substrate and a second substrate, a liquid crystal layer disposed between the first substrate and the second substrate, a pixel, and a first protrusion and a second protrusion. The pixel includes a first pixel electrode, a second pixel electrode, and a plurality of bridge electrodes disposed on the second substrate, in which the bridge electrodes are electrically connected to the first pixel electrodes and the second electrodes. The first protrusion and a second protrusion are disposed on the first substrate with respect to the first pixel electrode and the second pixel electrode.
Abstract:
An LCD substrate is used to prevent polyimide from unevenly distributing during heat and leveling processes. A portion of dielectric layers on data lines in transmissive regions is removed to form channels, which penetrate the dielectric layers between two adjacent transmissive regions. In other words, dielectric layer has a second thickness corresponding to the channels. Polyimide is distributed to all of transmissive regions evenly via these channels. There is a wall having a fifth thickness between a transmissive region and accordingly neighboring with reflective region to prevent polyimide distributing from the reflective region to the transmissive region because of the different thickness of the dielectric layer in the transmissive regions and the reflective regions. Thereof polyimide distributes evenly among transmissive regions and reflective regions to form a uniform alignment film because of these channels and walls. Then the alignment of the liquid crystal molecules is absolutely controlled to improve and maintain the quality of LCD.
Abstract:
A pixel element includes a transistor, a pixel electrode and a storage capacitor. The transistor is a switch device of the pixel element. A data signal is applied to the pixel electrode by switching the transistor. The storage capacitor includes the first electrode and the second electrode. Several holes are formed on a surface of the first electrode. Therefore, layers disposed over the first electrode duplicate the shape of the holes, so that the layers have rough surfaces, for increasing the reflectivity.
Abstract:
A single-gap transflective LCD panel having a voltage divider in each sub-pixel for reducing the voltage potential across part of the liquid crystal layer in the sub-pixel. In a normally-black LCD panel, the voltage divider is used to reduce the voltage potential across the liquid crystal layer in the reflection area. In a normally-white LCD panel, the voltage divider is used to reduce the voltage potential across the liquid crystal layer in the transmission area. The voltage divider comprises two poly-silicon resistor segments connected in series between a data line and a common line via one or more switching elements controlled by a gate line signal. With poly-silicon resistor segments being disposed in the reflection area below the reflective electrode, the optical quality of the upper electrode and the transmissive electrode is not affected by the voltage divider.
Abstract:
In a process of forming a LCD cell structure, an electrode layer provided with a recessed portion is formed over a substrate, and a transparent dielectric layer is formed to cover the recessed portion of the pixel electrode layer. The recessed portion of the electrode layer acts to distort an electric field created in the liquid crystal of the LCD system for image displaying, while the transparent dielectric layer eliminates the boundary conditions created by the concavity of the recessed portion of the electrode layer.