Abstract:
A method of fabricating an image sensor on a semiconductor substrate including a sensor array region is introduced. First, an R/G/B color filter array (CFA) is formed on portions of the semiconductor substrate corresponding to the sensor array region. Then, a spacer layer is formed on the R/G/B CFA, and a plurality of U-lens is formed on the spacer layer corresponding to the R/G/B CFA. Afterwards, a buffer layer is coated to fill a space between the U-lens, and a low-temperature passivation layer is deposited on the buffer layer and the U-lens at a temperature of about 300° C. or less to prevent the R/G/B CFA from damage.
Abstract translation:引入了在包括传感器阵列区域的半导体衬底上制造图像传感器的方法。 首先,在对应于传感器阵列区域的半导体衬底的部分上形成R / G / B滤色器阵列(CFA)。 然后,在R / G / B CFA上形成间隔层,在对应于R / G / B CFA的间隔层上形成多个U型透镜。 然后,涂覆缓冲层以填充U型透镜之间的空间,并且在约300℃或更低的温度下在缓冲层和U型透镜上沉积低温钝化层以防止R / G / B CFA从损坏。
Abstract:
A method of manufacturing metallic interconnects capable of reducing internal stress inside the metallic layer. The method comprises the steps of forming a silicon-rich oxide layer both before and after the formation of a metallic layer. Therefore, the metallic layer is fully enclosed by silicon-rich oxide layers and any direct contact between the metallic layer and any silicon dioxide layer is avoided. Since the quantity of silicon in the silicon-rich oxide layer is much higher than in a silicon dioxide layer, bonds formed between a silicon atom and an oxygen atom in the silicon-rich oxide layer are much stronger. Consequently, the chance for an aluminum atom in the metallic layer to react with an oxygen atom in the silicon-rich oxide layer is greatly reduced. Hence, lattice vacancies/voids that can lead to conventional stress migration and thermal induced migration problems are prevented.
Abstract:
A method for fabricating a crack resistant inter-layer dielectric for a salicide process. The method includes forming an insulating layer on a provided substrate, forming a planarized inter-layer dielectric layer on the insulating layer, and performing a short-duration thermal treatment to increase the density of the inter-layer dielectric layer.
Abstract:
A method of manufacturing the metallic electrodes of a capacitor in a mixed mode semiconductor device. The method comprises the steps of providing a substrate having a conductive layer and the lower electrode of a capacitor formed thereon, and then depositing a dielectric layer over the substrate. A first opening and a second opening are then formed in the dielectric layer. The first opening exposes a portion of the conductive layer while the second opening exposes a portion of the lower electrode. Finally, a conductive plug and the upper electrode of the capacitor are formed in the respective first and second openings that are in corresponding positions above the conductive layer and lower electrode, respectively.
Abstract:
A method of forming metallic capacitor. The method includes forming a lower electrode for forming the capacitor and a metal conductive line over an inter-layer dielectric such that there are gaps between and on the sides of the lower electrode and the metal conductive line. Thereafter, a first oxide layer is formed that fills the gap, and then a second oxide layer is formed over the inter-layer dielectric. The second oxide layer is later patterned to form a cap oxide layer having an opening that exposes a portion of the lower electrode. Subsequently, a thin dielectric layer is formed over the lower electrode and the cap oxide layer. Finally, an upper electrode is formed over the thin dielectric layer filling the opening.