Abstract:
A chromatographic method including chromatographically separating sample ionic species in an eluent stream, detecting the separated sample ionic species, catalytically combining hydrogen and oxygen gases or catalytically decomposing hydrogen peroxide in a catalytic gas elimination chamber, and recycling the effluent stream from the chamber to the chromatography separation column. The residence time between the detector and the chamber is at least about one minute. Also, flowing the recycle sequentially through two detector effluent flow channels of an electrolytic membrane suppressor. Also, applying heat or UV energy between the detector and the chamber. Also, detecting bubbles after the chamber. Also, a Platinum group metal catalyst and ion exchange medium in the chamber. Apparatus for performing the methods.
Abstract:
A suppressed ion chromatographic apparatus using a regenerant recycle loop, comprising (a) an ion separation device, (b) a membrane suppressor, (c) a detector, (d) a container for regenerant solution, (e) a first conduit between the ion separation device and the suppressor, (f) a second conduit between the regenerant solution container and the suppressor, (g) a third conduit between the suppressor and the regenerant solution container, and (h) a regenerant solution recycle loop out of fluid communication with the detector outlet.
Abstract:
A liquid chromatographic system is provided including catalytically combining hydrogen and oxygen gases in the chromatography eluent stream in a catalytic gas elimination chamber, to form water and thereby reduce the gas content in the eluent stream. Also, a liquid ion chromatographic system in which the effluent from the detector is recycled to a membrane suppressor and then is mixed with a source of eluent for recycle to the chromatographic column.
Abstract:
A method for making an ion exchange coating (e.g., a chromatographic medium) on a substrate comprising (a) reacting at least a first amine compound comprising amino groups, with at least a first polyfunctional compound, in the presence of a substrate to form a first condensation polymer reaction product, with a first unreacted excess of either at least said first amino group or polyfunctional compound functional moieties, irreversibly attached to the substrate, and (b) reacting at least a second amine compound or at least a second polyfunctional compound with unreacted excess in the first condensation polymer reaction product to form a second condensation polymer reaction product, and repeating the steps to produce the desired coating. A coated ion exchange substrate so made.
Abstract:
A method for making a weak cation-exchange (carboxylic acid) medium comprising contacting a solution of a functional organic polymer having carbon to carbon double bond unsaturation and having weak cationic exchange functional moieties or precursors thereof in a solvent with a substrate having an organic polymer surface, evaporating said solvent and breaking said double bond under conditions to cause the functional organic polymer to covalently bond to the substrate surface and to cross-link to form a cross-linked functional polymer layer covalently bound to the substrate surface. The medium produced by the method.
Abstract:
Anion-exchange compositions are provided comprising anion-exchange functional groups comprising at least a first and a second nitrogen group, wherein the first nitrogen group is a quaternary amine and the second nitrogen group is selected from the group consisting of primary, secondary, tertiary or quaternary amines. Methods of making and using the compositions are also provided.
Abstract:
Apparatus and methods are provided for increasing the sensitivity of detection of ionic species separated by capillary electrophoresis. The apparatus includes capillary electrophoretic separating means, suppressor means and detector means.
Abstract:
A method of calibrating, a chromatography system is described. The method includes injecting a standard into a chromatographic separator. The standard including a first analyte having a first calibrant concentration and a second analyte having a second calibrant concentration. The standard can be separated in the chromatographic separator and measured with a detector. The method automatically identifies whether the first peak corresponds to the first analyte or the second analyte and whether the second peak corresponds to the first analyte or the second analyte, based on either an area or a peak height of the first peak and the second peak, and a ratio based on the first calibrant concentration and the second calibrant concentration.
Abstract:
A detection cell for a chromatography system includes a cell body having an inlet, an outlet, and a counter electrode, a working electrode, a sample flow passageway extending between the inlet and the outlet and in fluid contact with the counter and working electrodes, and a palladium/noble metal reference electrode system. A method of using the detection cell is also described.
Abstract:
A continuous electrochemical pump comprising a water generator compartment, an anode compartment on one side of said generator compartment, a cation exchange barrier, separating the generator compartment from the anode compartment, it first electrode in electrical communication with the anode compartment, a cathode compartment adjacent the generator chamber, an anion exchange barrier, separating the generation compartment from the cathode compartment, and a second electrode in electrical communication with the cathode compartment. Use of the pump as a sample concentrator. A feedback loop for the pump. A reservoir, with or without an intermediate piston, on the output side of the pump.