摘要:
A fluid ejection device, a method of cleaning the device, and a method of operating the device are provided. The device includes a substrate having a first surface and a second surface located opposite the first surface. A nozzle plate is formed over the first surface of the substrate and has a nozzle through which fluid is ejected. A drop forming mechanism is situated at the periphery of the nozzle. A fluid chamber is in fluid communication with the nozzle and has a first wall and a second wall. The first wall and the second wall are positioned at an angle other than 90° relative to each other. A fluid delivery channel is formed in the substrate and extends from the second surface of the substrate to the fluid chamber. The fluid delivery channel is in fluid communication with the fluid chamber.
摘要:
A method of etching a substrate and an article(s) formed using the method are provided. The method includes providing a substrate; coating a region of the substrate with a temporary material having properties that enable the temporary material to remain substantially intact during subsequent processing and enable the temporary material to be removed by a subsequent process that allows the substrate to remain substantially unaltered; removing a portion of the substrate to form a feature, at least some of the removed portion of the substrate overlapping at least a portion of the coated region of the substrate while allowing the temporary material substantially intact; and removing the temporary material while allowing the substrate to remain substantially unaltered.
摘要:
An asymmetric heat-type inkjet printer includes an inkjet printhead having at least one nozzle for continuously ejecting a stream of ink that forms a train of ink droplets, a heater disposed adjacent to the nozzle for selectively thermally deflecting the droplet forming stream of ink either toward a printing medium, or an ink gutter that captures and recirculates the ink. To increase the angle of deflection that the intermittently operated heater imposes on the droplet-forming stream of ink, a steering fluid assembly is provided in communication with the inkjet nozzle for co-extruding a thin film of fluid around the ink which has a higher volatility and a lower thermal diffusivity than the liquid forming the ink. When the ink is water based, the steering fluid may be, for example, polyethylene oxide based surfactant, or isopropanol. The invention allows water-based ink droplets in such printers to be deflected at greater angles in response to heat pulses generated by the heater, thereby enhancing printing accuracy and speed.
摘要:
A continuous ink jet print head is formed of a silicon substrate that includes integrated circuits formed therein for controlling operation of the print head. An insulating layer or layers overlies the silicon substrate and has a series or an array of nozzle openings or bores formed therein along the length of the substrate and each nozzle opening is formed in a recess in the insulating layer or layers by a material depletion process such as etching. The process of etching defines the nozzle openings at locations where heater elements are formed in the insulating layer or layers during a conventional CMOS processing of the integrated circuits. The print head structure thereby provides for minimal post processing of the print head after the completion of the CMOS processing.
摘要:
A method of ejecting a drop of fluid includes providing a fluid ejector. The fluid ejector includes a substrate, a MEMS transducing member, a compliant membrane, walls, and a nozzle. The substrate includes a cavity and a fluidic feed. A first portion of the MEMS transducing member is anchored to the substrate. A second portion of the MEMS transducing member extends over at least a portion of the cavity and is free to move relative to the cavity. The compliant membrane is positioned in contact with the MEMS transducing member. A first portion of the compliant membrane covers the MEMS transducing member, A second portion of the compliant membrane being anchored to the substrate. Walls define a chamber that is fluidically connected to the fluidic feed. At least the second portion of the MEMS transducing member is enclosed within the chamber. A quantity of fluid is supplied to the chamber through the fluidic feed. An electrical pulse is applied to the MEMS transducing member to eject a drop of fluid through the nozzle.
摘要:
A liquid ejector includes a substrate, a heating element, a dielectric material layer, and a chamber. The substrate includes a first surface. The heating element is located over the first surface of the substrate such that a cavity exists between the heating element and the first surface of the substrate. The dielectric material layer is located between the heating element and the cavity such that the cavity is laterally bounded by the dielectric material layer. The chamber, including a nozzle, is located over the heating element. The chamber is shaped to receive a liquid with the cavity being isolated from the liquid.
摘要:
A liquid ejector includes a structure defining a chamber. The chamber includes a first surface and a second surface. The first surface includes a nozzle orifice. A drop forming mechanism is located on the second surface of the chamber opposite the nozzle orifice. A first liquid feed channel and a second liquid feed channel are in fluid communication with the chamber. A first segment of a segmented liquid inlet is in fluid communication with the first liquid feed channel and a second segment of the segmented liquid inlet is in fluid communication with the second liquid feed channel.
摘要:
A fluid ejecting device and method of forming same are provided. The fluid ejecting device includes a substrate having a first surface and a second surface located opposite the first surface. A nozzle plate is formed over the first surface of the substrate. The nozzle plate has a nozzle through which fluid is ejected. A drop forming mechanism is situated at the periphery of the nozzle. A fluid chamber is in fluid communication with the nozzle and has a first wall and a second wall with the first wall and the second wall being positioned at an angle relative to each other. A fluid delivery channel is formed in the substrate and extends from the second surface of the substrate to the fluid chamber. The fluid delivery channel is in fluid communication with the fluid chamber. A source of fluid impedance includes a physical structure located between the nozzle and the fluid delivery channel.
摘要:
An ink jet print head is formed of a silicon substrate that includes an integrated circuit formed therein for controlling operation of the print head. The silicon substrate has one or more ink channels formed therein along the longitudinal direction of the nozzle array. An insulating layer or layers overlie the silicon substrate and has a series or an array of nozzle openings or bores formed therein along the length of the substrate and each nozzle opening communicates with an ink channel. The area comprising the nozzle openings forms a generally planar surface to facilitate maintenance of the printhead. A heater element is associated with each nozzle opening or bore for asymmetrically heating ink as ink passes through the nozzle opening or bore.
摘要:
A continuous ink jet printer having improved ink drop placement and image quality insuring from importing enhanced lateral flow characteristics, by geometric obstruction within it's ink delivery channel, which, in turn, enables enhanced ink drop deflection.