Abstract:
A composition comprising: at least one compound comprising a hole transporting core, wherein the core is covalently bonded to a first arylamine group and also covalently bonded to a second arylamine group different from the first, and wherein the compound is covalently bonded to at least one intractability group, wherein the intractability group is covalently bonded to the hole transporting core, the first arylamine group, the second arylamine group, or a combination thereof, and wherein the compound has a molecular weight of about 5,000 g/mole or less. Blended mixtures of arylamine compounds, including fluorene core compounds, can provide good film formation and stability when coated onto hole injection layers. Solution processing of OLEDs is a particularly important application.
Abstract:
Oligomers and/or polymers comprising a backbone comprising arylamine and fluorinated alkyleneoxy moieties which may be crosslinked. Ink formulations and devices can be formed from the oligomers or polymers, or corresponding monomers. Doped compositions can be formed. Charge injection and transport layers can be formed. Improved stability can be achieved in organic electronic devices such as OLEDs and OPVs.
Abstract:
Use of certain materials in hole injection layer and/or hole transport layer can improve operational lifetimes in organic devices. Polymers having fused aromatic side groups such as polyvinylnaphthol polymers can be used in conjunction with conjugated polymers. Inks can be formulated and cast as films in organic electronic devices including OLEDs, SMOLEDs, and PLEDs. One embodiment provides a composition comprising: at least one conjugated polymer, and at least one second polymer different from the conjugated polymer comprising at least one optionally substituted fused aromatic hydrocarbon side group. The substituent can be hydroxyl. Aqueous-based inks can be formulated.
Abstract:
A composition comprising: at least one compound comprising a hole transporting core, wherein the core is covalently bonded to a first arylamine group and also covalently bonded to a second arylamine group different from the first, and wherein the compound is covalently bonded to at least one intractability group, wherein the intractability group is covalently bonded to the hole transporting core, the first arylamine group, the second arylamine group, or a combination thereof, and wherein the compound has a molecular weight of about 5,000 g/mole or less. Blended mixtures of arylamine compounds, including fluorene core compounds, can provide good film formation and stability when coated onto hole injection layers. Solution processing of OLEDs is a particularly important application.
Abstract:
Compositions comprising at least one hole transport material, such as a conjugated polymer, and at least one dopant, providing improved thermal stability. Compositions can be applied to substrates and used in HIL and HTL layers and organic electronic devices such as light emitting devices such as OLEDs or OPVs. The conjugated polymer can be a polythiophene, including a 3,4-substituted polythiophene or a regioregular polythiophene. The dopant can be a silver salt such as silver tetrakis(pentafluorophenyl)borate. Improved methods of making dopant are provided.
Abstract:
A composition comprising a homopolymer or a copolymer comprising bithiophene units for use in, for example, low band gap materials including uses in organic photovoltaic active layers. The band gap and other properties can be engineered by polymerization methods including selection of monomer structure and ratio of monomer components. In addition, a dimer adapted for making alternating copolymers further comprising one first monomer moiety comprising at least one bithiophene moiety compound covalently linked to one second monomer moiety comprising a different bithiophene moiety or at least one moiety that is not a bithiophene. The composition can be copolymerized to form an alternating copolymer that can be further processed to form a polymeric film used in a printed organic electronic device. A series of novel copolymers are designed that would allow fabrication of materials with tailor made electronic and/or mechanical properties that can be easily manipulated through molecules chemical structure and potentially result in long term stability under ambient conditions that can be advantageous for use in organic electronics (e.g., OPVs, OLEDs, OFETs). Improved methods are disclosed for making monomers comprising a benzo[2,1-b:3,4-b′]dithiophene moiety that are useful as electronics materials.
Abstract:
An electroluminescent device comprises a cathode and an anode; and, located therebetween, a light-emitting layer (LEL) comprising at least one hole transporting co-host and at least one electron transporting co-host, together with at least one phosphorescent emitter, and wherein the triplet energy of each of the co-host materials is greater than the triplet energy of the phosphorescent emitter, and further containing an exciton blocking layer comprising a hole transporting material with triplet energy greater or equal to 2.5 eV adjacent the emitting layer on the anode side. The invention provides devices that emit light with high luminous efficiency at low voltage.
Abstract:
A composition comprising: at least one conjugated polymer, at least one second polymer comprising repeat units represented by: (I) optionally, —[CH2—CH(Ph-OH)]— and (II) —[CH2—CH(Ph-OR)]- wherein Ph is a phenyl ring and R comprises a fluorinated group, an alkyl group, an alkylsulfonic acid group, an alkylene oxide group, or a combination thereof. Other polymers can be used as second polymer including polymers comprising modified naphthol side groups. Used in hole injection and hole transport layers for organic electronic devices. Increased lifetime and better processability can be achieved. Versatility with useful OLED emitters can be achieved. Ink formulations can be adapted for ink jet printing. The conjugated polymer can be a polythiophene. Applications include OLEDs and OPVs.
Abstract:
An electroluminescent device comprises a light-emitting layer containing a host and a light-emitting material wherein the light-emitting material comprises a boron complex containing boron complexed by two ring nitrogens of a deprotonated bis(aromatic)amine or bis(aromatic)methene ligand wherein the boron complex contains a tertiary amine substituent group. The invention provides a material for a light-emitting layer of an EL device that exhibits improved luminance efficiency.
Abstract:
Organic light-emitting diodes (OLEDs) that produce white light include an anode, a hole-transporting layer disposed over the anode, a blue light-emitting layer disposed over the hole-transporting layer, an electron-transporting layer disposed over the blue light-emitting layer, and a cathode disposed over the electron-transporting layer. The hole-transporting layer is doped with both a yellow-emitting and a red-emitting dopant. When used together with red, green, and blue color filters, the OLEDs produce red, green, and blue light with good color quality and high efficiency. Also disclosed are multicolor display devices utilizing the OLEDs together with color filters or together with both color filters and liquid-crystal light valves.