摘要:
Architecture for monitoring a bottom anti-reflective coating (BARC) undercut and residual portions thereof during a development stage using scatterometry. The scatterometry system monitors for BARC undercut and residual BARC material, and if detected, controls the process to minimize such effects in subsequent wafers. If one or more of such effects has exceeded a predetermined limit, the wafer is rerouted for further processing, which can include rework, etch back of the affected layer, or rejection of the wafer, for example.
摘要:
A system for selectively generating and feeding forward reticle fabrication data is provided. The system includes components for fabricating a reticle and a control system operatively connected to the fabricating components, where the control system can control the operation of the fabricating components. The control system bases its control of the fabricating components, at least in part, on feed forward control information generated by a processor that analyzes scatterometry based reticle fabrication data gathered from measurement components. The scatterometry data is compared to data stored in a signature data store that facilitates analyzing gathered scatterometry signatures to produce feed forward control information that can be employed to manipulate subsequent reticle fabrication processes and/or apparatus.
摘要:
A system and methodology are disclosed for monitoring and controlling a semiconductor fabrication process. Measurements are taken in accordance with scatterometry based techniques of repeating in circuit structures that evolve on a wafer as the wafer undergoes the fabrication process. The measurements can be employed to generate feed forward and/or feedback control data that can utilized to selectively adjust one or more fabrication components and/or operating parameters associated therewith to adapt the fabrication process. Additionally, the measurements can be employed in determining whether to discard the wafer or portions thereof based on a cost benefit analysis, for example. Directly measuring in circuit structures mitigates sacrificing valuable chip real estate as test grating structures may not need to be formed within the wafer, and also facilitates control over the elements that actually affect resulting chip performance.
摘要:
A system comprised of a plurality of fabs that are operatively coupled and share data from a common framework for correlating production. The fabs can be coupled via Internet, cellular, optical, landline, microwave and satellite communication means and the like. Data can be transferred to and/or received from a central, integrated correlating entity or from several distributed correlating entities. The fabs send and receive correlating data that relates to production information such as tolerances, critical dimensions, geometry and the like. The correlating entity(s) has the capability to increase production by performing probabilistic computations on the received correlating data and utilizing the resulting information to maintain correlating parameters at remote locations. The computations performed can include such calculations as Bayesian inferencing and the like. The system inherently precludes the necessity for physically transporting parametric test entities between different fab or tooling locations.
摘要:
A system and methodology is provided for monitoring and controlling static charge during wafer and mask fabrication. The static charge on a target device is monitored. If the static charge becomes too high, corrective actions are taken to reduce the static charge. An antistatic solution is dispensed on the target device. The system and methodology provided reduce damage resulting from electrostatic discharge during fabrication. The system and methodology also reduce delays during fabrication by automatically controlling static charge without the need for manual intervention.
摘要:
One aspect of the present invention relates to a system and method for examining a wafer for delamination in real time while polishing the wafer. The system comprises a polishing system programmed to planarize one or more film layers formed on at least a portion of a semiconductor wafer surface; a real-time metrology system coupled to the polishing system such that the metrology system examines the layers as they are planarized; and one or more delamination sensors, wherein at least a portion of each sensor is integrated into the polishing system in order to provide data to the metrology system and wherein the sensor comprises at least one optical element to detect delamination during polishing. The method involves polishing at least a portion of an uppermost film layer and examining at least a portion of a layer underlying the uppermost film layer for delamination as the uppermost layer is being polished.
摘要:
One aspect of the invention relates to a metal fill process and systems therefor involving providing a standard calibration wafer having a plurality of fill features of known dimensions in a metalization tool; depositing a metal material over the standard calibration wafer; monitoring the deposition of metal material using a sensor system, the sensor system operable to measure one or more fill process parameters and to generate fill process data; controlling the deposition of metal material to minimize void formation using a control system wherein the control system receives fill process data from the sensor system and analyzes the fill process data to generate a feed-forward control data operative to control the metalization tool; and depositing metal material over a production wafer in the metalization tool using the fill process data generated by the sensor system and the control system. The invention further relates to tool characterization processes and systems therefor.
摘要:
One aspect of the present invention relates to a method to facilitate formation of an oxide portion of an anti-reflective layer on a substrate. The method involves the steps of forming an oxidized portion of an anti-reflective coating over an anti-reflective layer disposed on the substrate; reflecting a beam of x-ray radiation at the oxidized portion; generating a measurement signal based on the reflected portion of the light beam; and determining a thickness of the oxidized portion based on the measurement signal while the oxidized portion is being formed at the substrate.
摘要:
A system for regulating the time and temperature of a development process is provided. The system includes one or more light sources, each light source directing light to one or more gratings being developed on a wafer. Light reflected from the gratings is collected by a measuring system, which processes the collected light. Light passing through the gratings may similarly be collected by the measuring system, which processes the collected light. The collected light is indicative of the progress of development of the respective portions of the wafer. The measuring system provides progress of development related data to a processor that determines the progress of development of the respective portions of the wafer. The system also includes a plurality of heating devices, each heating device corresponds to a respective portion of the developer and provides for the heating thereof. The processor selectively controls the heating devices so as to regulate temperature of the respective portions of the wafer.
摘要:
One aspect of the present invention relates to a method for reducing resist residue defects on a wafer structure. The method involves providing a semiconductor structure having a photoresist, the photoresist comprising open areas and circuit areas thereon; irradiating the open areas and circuit areas through a first photomask with a first energy dose to effect an image-wise pattern in the photoresist; irradiating the open areas of the photoresist through a second photomask with a second energy dose; and developing the photoresist.