Abstract:
Illustrative embodiments represent a dynamic on-demand approach to configuring destination storage for bare metal restore (BMR) operations without operator intervention, including destination storage that is smaller than source storage devices. The illustrative operations rely on system state information collected concurrently with or shortly after source data is backed up, thereby capturing current actual storage metrics for the source data. The illustrative embodiments further rely on enhanced data agent components to collect and restore system state information as well as to restore backup data, thereby streamlining the configurations needed for the BMR operation to proceed. Additional business logic matches source mount points with suitable smaller destination storage resources and ensures that the BMR operation successfully completes with diverse and/or smaller storage destinations.
Abstract:
A method and system for communicating with IoT devices connected to a vehicle to gather information related to device operation or performance is disclosed. The system makes a copy of at least a portion of the device's non-volatile memory and/or receives IoT device data (e.g., sensor data and/or log files etc.) from an IoT device that recently failed. The system determines which log files and/or sensor data, for example, the IoT device created before and/or after a failure. After gathering this information, the system stores the information, sends it to a storage destination for further analysis and diagnostics to troubleshoot the failure and send a fix or software update to the IoT device. The information can also be placed into secondary storage to comply with regulatory, insurance, or legal purposes.
Abstract:
A “backup services container” comprises “backup toolkits,” which include scripts for accessing containerized applications plus enabling utilities/environments for executing the scripts. The backup services container is added to Kubernetes pods comprising containerized applications without changing other pod containers. For maximum value and advantage, the backup services container is “over-equipped” with toolkits. The backup services container selects and applies a suitable backup toolkit to a containerized application to ready it for a pending backup. Interoperability with a proprietary data storage management system provides features that are not possible with third-party backup systems. Some embodiments include one or more components of the proprietary data storage management within the illustrative backup services container. Some embodiments include one or more components of the proprietary data storage management system in a backup services pod configured in a Kubernetes node. All configurations and embodiments are suitable for cloud and/or non-cloud computing environments.
Abstract:
According to certain aspects, a method of creating customized bootable images for client computing devices in an information management system can include: creating a backup copy of each of a plurality of client computing devices, including a first client computing device; subsequent to receiving a request to restore the first client computing device to the state at a first time, creating a customized bootable image that is configured to directly restore the first client computing device to the state at the first time, wherein the customized bootable image includes system state specific to the first client computing device at the first time and one or more drivers associated with hardware existing at time of restore on a computing device to be rebooted; and rebooting the computing device to the state of the first client computing device at the first time from the customized bootable image.
Abstract:
Hypervisor-independent block-level live browse is used for directly accessing backed up virtual machine (VM) data. Hypervisor-free file-level recovery (block-level pseudo-mount) from backed up VMs also is disclosed. Backed up virtual machine (“VM”) data can be browsed without needing or using a hypervisor. Individual backed up VM files can be requested and restored to anywhere without a hypervisor and without the need to restore the rest of the backed up virtual disk. Hypervisor-agnostic VM backups can be browsed and recovered without a hypervisor and from anywhere, and individual backed up VM files can be restored to anywhere, e.g., to a different VM platform, to a non-VM environment, without restoring an entire virtual disk, and without a recovery data agent at the destination.
Abstract:
According to certain aspects, a method of creating customized bootable images for client computing devices in an information management system can include: creating a backup copy of each of a plurality of client computing devices, including a first client computing device; subsequent to receiving a request to restore the first client computing device to the state at a first time, creating a customized bootable image that is configured to directly restore the first client computing device to the state at the first time, wherein the customized bootable image includes system state specific to the first client computing device at the first time and one or more drivers associated with hardware existing at time of restore on a computing device to be rebooted; and rebooting the computing device to the state of the first client computing device at the first time from the customized bootable image.
Abstract:
Live mounting a virtual machine (VM) causes the VM to run off a backup copy or snapshot previously taken of a “live” production VM. The live-mounted VM is generally intended for temporary use such as to validate the integrity and contents of the backup copy for disaster recovery validation, or to access some contents of the backup copy from the live-mounted VM without restoring all backed up files. These uses contemplate that changes occurring during live mount are not preserved after the live-mounted VM expires or is taken down. Thus, live mounting a VM is not a restore operation and usually does not involve access to every block of data in the backup copy. However, live mounting provides live VM service in the cloud sooner than waiting for all of the backup copy/snapshot to be restored.
Abstract:
A “backup services container” comprises “backup toolkits,” which include scripts for accessing containerized applications plus enabling utilities/environments for executing the scripts. The backup services container is added to Kubernetes pods comprising containerized applications without changing other pod containers. For maximum value and advantage, the backup services container is “over-equipped” with toolkits. The backup services container selects and applies a suitable backup toolkit to a containerized application to ready it for a pending backup. Interoperability with a proprietary data storage management system provides features that are not possible with third-party backup systems. Some embodiments include one or more components of the proprietary data storage management within the illustrative backup services container. Some embodiments include one or more components of the proprietary data storage management system in a backup services pod configured in a Kubernetes node. All configurations and embodiments are suitable for cloud and/or non-cloud computing environments.
Abstract:
A method and system for communicating with IoT devices to gather information related to device failure or error(s) is disclosed. The system makes a copy of at least a portion of the device's non-volatile memory and/or receives IoT device data (e.g., sensor data and/or log files etc.) from an IoT device that recently failed. The system determines which log files and/or sensor data, for example, the IoT device created before and/or after a failure. After gathering this information, the system stores the information in a database, sends it to the IoT device manufacturer, for further analysis and diagnostics to troubleshoot the failure and send a fix or software update to the IoT device.
Abstract:
Illustrative embodiments represent a dynamic on-demand approach to configuring destination storage for bare metal restore (BMR) operations without operator intervention, including destination storage that is smaller than source storage devices. The illustrative operations rely on system state information collected concurrently with or shortly after source data is backed up, thereby capturing current actual storage metrics for the source data. The illustrative embodiments further rely on enhanced data agent components to collect and restore system state information as well as to restore backup data, thereby streamlining the configurations needed for the BMR operation to proceed. Additional business logic matches source mount points with suitable smaller destination storage resources and ensures that the BMR operation successfully completes with diverse and/or smaller storage destinations.