Abstract:
A method is disclosed for forming a blended phosphor composition. The method includes the steps of firing precursor compositions that include europium and nitrides of at least calcium, strontium and aluminum, in a refractory metal crucible and in the presence of a gas that precludes the formation of nitride compositions between the nitride starting materials and the refractory metal that forms the crucible. The resulting compositions can include phosphors that convert frequencies in the blue portion of the visible spectrum into frequencies in the red portion of the visible spectrum.
Abstract:
A yellow phosphor having an increased activator concentration includes a host lattice comprising yttrium aluminum garnet (YAG) and an activator comprising cerium in the host lattice, where the cerium is present at a concentration of at least about 5 wt. % Ce. A method of making a yellow phosphor includes forming a reaction mixture comprising: a first precursor comprising cerium and oxygen; a second precursor comprising cerium and fluorine; a third precursor comprising yttrium; and a fourth precursor comprising aluminum. The reaction mixture is heated in a reducing environment at a temperature sufficient to form a yellow phosphor including a host lattice comprising yttrium aluminum garnet and an activator comprising cerium (Ce) incorporated in the host lattice.
Abstract:
A yellow phosphor having an increased activator concentration includes a host lattice comprising yttrium aluminum garnet (YAG) and an activator comprising cerium in the host lattice, where the cerium is present at a concentration of at least about 5 wt. % Ce. A method of making a yellow phosphor includes forming a reaction mixture comprising: a first precursor comprising cerium and oxygen; a second precursor comprising cerium and fluorine; a third precursor comprising yttrium; and a fourth precursor comprising aluminum. The reaction mixture is heated in a reducing environment at a temperature sufficient to form a yellow phosphor including a host lattice comprising yttrium aluminum garnet and an activator comprising cerium (Ce) incorporated in the host lattice.
Abstract:
Group III nitride based light emitting diode (LED) structures include multiple quantum wells with barrier-well units that include III nitride interface layers. Each interface layer may have a thickness of no greater than about 30% of an adjacent well layer, and a comparatively low concentration of indium or aluminum. One or more interface layers may be present in a barrier-well unit. Multiple barrier-well units having different properties may be provided in a single active region.
Abstract:
A method is disclosed for forming a blended phosphor composition. The method includes the steps of firing precursor compositions that include europium and nitrides of at least calcium, strontium and aluminum, in a refractory metal crucible and in the presence of a gas that precludes the formation of nitride compositions between the nitride starting materials and the refractory metal that forms the crucible. The resulting compositions can include phosphors that convert frequencies in the blue portion of the visible spectrum into frequencies in the red portion of the visible spectrum.