Abstract:
Group III nitride based light emitting diode (LED) structures include multiple quantum wells with barrier-well units that include III nitride interface layers. Each interface layer may have a thickness of no greater than about 30% of an adjacent well layer, and a comparatively low concentration of indium or aluminum. One or more interface layers may be present in a barrier-well unit. Multiple barrier-well units having different properties may be provided in a single active region.
Abstract:
Group III nitride based light emitting diode (LED) structures include multiple quantum wells with barrier-well units that include Ill nitride interface layers. Each interface layer may have a thickness of no greater than about 30% of an adjacent well layer, and a comparatively low concentration of indium or aluminum. One or more interface layers may be present in a barrier-well unit. Multiple barrier-well units having different properties may be provided in a single active region.
Abstract:
Group III nitride based light emitting diode (LED) structures include multiple quantum wells with barrier-well units that include III nitride interface layers. Each interface layer may have a thickness of no greater than about 30% of an adjacent well layers, and a comparatively low concentration of indium or aluminum. One or more interface layers may be present in a barrier-well unit. Multiple barrier-well units having different properties may be provided in a single active region.
Abstract:
Group III nitride based light emitting diode (LED) structures include multiple quantum wells with barrier-well units that include Ill nitride interface layers. Each interface layer may have a thickness of no greater than about 30% of an adjacent well layer, and a comparatively low concentration of indium or aluminum. One or more interface layers may be present in a barrier-well unit. Multiple barrier-well units having different properties may be provided in a single active region.
Abstract:
Group III nitride light emitting diode (LED) structures with improved electrical performance are disclosed. A Group III nitride LED structure includes one or more n-type layers, one or more p-type layers, and an active region that includes a plurality of sequentially arranged barrier-well units. In certain embodiments, doping profiles of barrier layers of the barrier-well units are configured such that a doping concentration in some barrier-well units is different than a doping concentration in other barrier-well units. In certain embodiments, a doping profile of a particular barrier layer is non-uniform. In addition to active region configurations, the doping profiles and sequence of the n-type layers and p-type layers are configured to provide Group III nitride structures with higher efficiency, lower forward voltages, and improved forward voltage performance at elevated currents and temperatures.
Abstract:
Group III nitride based light emitting diode (LED) structures include multiple quantum wells with barrier-well units that include III nitride interface layers. Each interface layer may have a thickness of no greater than about 30% of an adjacent well layer, and a comparatively low concentration of indium or aluminum. One or more interface layers may be present in a barrier-well unit. Multiple barrier-well units having different properties may be provided in a single active region.
Abstract:
Group III nitride based light emitting diode (LED) structures include multiple quantum wells with barrier-well units that include III nitride interface layers. Each interface layer may have a thickness of no greater than about 30% of an adjacent well layer, and a comparatively low concentration of indium or aluminum. One or more interface layers may be present in a barrier-well unit. Multiple barrier-well units having different properties may be provided in a single active region.
Abstract:
Group III nitride based light emitting diode (LED) structures include multiple quantum wells with barrier-well units that include III nitride interface layers. Each interface layer may have a thickness of no greater than about 30% of an adjacent well layer, and a comparatively low concentration of indium or aluminum. One or more interface layers may be present in a barrier-well unit. Multiple barrier-well units having different properties may be provided in a single active region.
Abstract:
A solid state light emitting device includes a solid state light emitter and a lumiphoric material that are selected for use with one another to provide light emissions with improved (i.e., reduced) thermal droop A solid state emitter having a short peak emission wavelength (e.g., in a visible range at or below 440 nm) seemingly less than optimal at room temperature for use with a particular lumiphor can trigger more efficient stimulation of lumiphor emissions at high temperatures. Enhanced epitaxial structures also inhibit decrease of radiant flux by LEDs at elevated temperatures.