Abstract:
A transformative wavelength conversion medium is provided, comprising: a phosphor; and, a curable liquid component, wherein the curable liquid component, comprises: an aliphatic resin component, wherein the aliphatic resin component has an average of two epoxide groups per molecule; and, a curing agent; wherein the curable liquid component contains less than 0.5 wt % of monoepoxide molecules (based on the total weight of the aliphatic resin component); and, wherein the curable liquid component is a liquid at 25° C. and atmospheric pressure; and, wherein the phosphor is dispersed in the curable liquid component.
Abstract:
Disclosed herein are polycyanates of the formula: where R, m, Q, p and Z are as defined herein. Also disclosed are methods of curing said polycyanates and methods of using said polycyanates to provide high Tg thermoset products.
Abstract:
Phenyl isocyanates are removed from a solvent stream obtained from an MDI and/or PMDI manufacturing process by reaction in the presence of a carbodiimidization catalyst to form the corresponding N,N-diphenylcarbodiimides. The N,N-diphenylcarbodiimides can be recycled into the MDI and/or PMDI manufacturing process where they can react with MDI and/or PMDI to form uretonimines. The uretonimines have at most minimal effect on the properties and usefulness of the MDI and/or PMDI product and so can be left in the MDI and/or PMDI product.
Abstract:
Organic isocyanates are converted to ureas by heating in the presence of certain cobalt, magnesium, chromium and lanthanide series organometallic catalysts. The process requires no water or other reactants. The process is particularly useful for removing small quantities of monoisocyanates from a solvent stream recovered from a polyisocyanate manufacturing process. The urea compounds in some instances can be recycled back into the polyisocyanate manufacturing process and reacted with polyisocyanate compounds to form biurets.
Abstract:
Disclosed is a composition and use thereof for the recovery of hydrocarbon fluids from a subterranean reservoir. More particularly, this invention concerns sulfonated epoxy resin polymers comprising an epoxide-containing compound, a primary amino sulfonate, and optionally one or more of a primary monoamine alkylene oxide oligomer, that modify the permeability of subterranean formations and increase the mobilization and/or recovery rate of hydrocarbon fluids present in the formations.
Abstract:
A polymer including a sub-unit comprising a Troger's base moiety represented by: Formula (I) wherein L comprises an arylene group including at least one substituent group selected from: i) a crosslinking bond and ii) a functional group selected from at least one of: hydroxyl, phosphonic acid, carboxylic acid and sulfonic acid and their corresponding salt or ester; alkynyl, alkynyl ether, cyanate, epoxide, glycidyl ether or ester.
Abstract:
A polymer comprising a sub-unit or repeating unit including a spirobisindane moiety and Troger's base moiety linked together by way of a linking group (L) wherein the linking group (L) is represented by Formula III: wherein Z and Z′ are independently selected from an ether and ester functional group.
Abstract:
A copolymer including a repeating unit represented by (I) wherein: Y is selected from: a carboxylic acid, sulfonic, phosphorous acid and phosphoric acid and their corresponding salt or ester; imino, amide, nitrile, hydrogen, hydroxyl and alkyl comprising from 1 to 6 carbon atoms; and R1, R2, R3, and R4 are independently selected from: hydrogen, alkyl groups comprising from 1 to 6 carbon atoms, and R1 and R2 may collectively form a ketone group or a 9, 9′-fluorene group, and R3 and R4 may collectively form a ketone group or a 9, 9′-fluorene group; R5 and R6 are independently selected from: a bond and an alkylene group comprising from 1 to 6 carbon atoms; R7 is selected from: hydrogen, alkyl, aryl, aralkyl and heteroaryl groups comprising from 1 to 8 carbon atoms which may be unsubstituted or substituted with carboxylic acid, sulfonic acid and phosphoric acid and their corresponding salt or ester, imino and amide; and X and X′ are independently selected from: a carboxylic acid, sulfonic acid and phosphoric acid and their corresponding salt or ester, imino and amide; nitrile, hydrogen, alkyl having from 1 to 6 carbon atoms and alkoxy having from 1 to 6 carbon atoms.