Abstract:
A cell stack assembly (102) coolant system comprises a coolant exhaust conduit (110) in fluid communication with a coolant exhaust manifold (108) and a coolant pump (112). A coolant inlet conduit (120) enables transportation of the coolant to the coolant inlet manifold. The coolant system further includes a bypass conduit (132) in fluid communication with the coolant exhaust manifold and the coolant inlet manifold, while a bleed valve (130) is in fluid communication with the coolant exhaust conduit and a source of gas. Operation of the bleed valve enables venting of the coolant from the coolant channels, and through a shut down conduit (124). An increased pressure differential between the coolant and reactant gases forces water out of the pores in the electrode substrates (107,109). An ejector (250) prevents air form inhibiting the pump. Pulsed air is blown (238,239,243,245) through the coolant channels to remove more water.
Abstract:
A coolant system is proposed for addressing temperature concerns during start-up and shut-down of a cell stack assembly. The coolant system comprises a coolant exhaust conduit in fluid communication with a coolant exhaust manifold and a coolant pump, the coolant exhaust conduit enabling transportation of exhausted coolant away from a coolant exhaust manifold. A coolant return conduit is provided to be in fluid communication with a coolant inlet manifold and a coolant pump, the coolant return conduit enabling transportation of the coolant to the coolant inlet manifold. The coolant system further includes a bypass conduit in fluid communication with the coolant exhaust conduit and the coolant return conduit, while a bleed valve is in fluid communication with the coolant exhaust conduit and a gaseous stream. Operation of the bleed valve enables venting of the coolant from the coolant channels, and through said bypass conduit.
Abstract:
Chemical vapor deposition (CVD) techniques for forming tough silicon carbide (SiC) matrix composites. The introduction of methyldichlorosilane (MDS) to a reactor containing a fiber preform which been flushed with a noble gas, causes the formation of a carbon layer around the fibers. The carbon interlayer improves the fracture toughness of the composite.
Abstract:
A method of imprinting a workpiece includes lasing the workpiece to create a depression or other opening, depositing a laser-fusible polymer material into the depression, and then lasing the material so as to fuse the material into the depression. Preferably, the laser-fusible polymer material is fusible in the near infrared spectrum. An alternate method for imprinting using colored powder paints includes an additional step of heating the workpiece to ensure thermosetting of the colored powder paint. Laser fusible materials having particular physical characteristics and compositions may be used to facilitate the process.
Abstract:
A method for making a high critical current density Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor includes mixing suitable solid state reactants in amounts sufficient to create a reactant mixture having a ratio of approximately 4 Bi atoms:3 Ca atoms:3 Sr atoms:4 Cu atoms and oxygen. The reactant mixture is heated to a sufficient temperature for a sufficient time to sinter the reactant mixture and form a Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor.
Abstract translation:制备高临界电流密度的方法包括混合合适的固态反应物,其量足以产生具有约4个Bi原子:3个Ca原子:3个Sr原子:4个Cu原子和氧的比例的反应物混合物。 将反应混合物加热到足够的温度足够的时间以烧结反应物混合物并形成Bi 2 Ca 2 SrC 2 O 8超导体。
Abstract:
A membrane electrode assembly includes an anode; a cathode; a membrane disposed between the anode and the cathode; and an extended catalyzed layer between the membrane and at least one electrode of the anode and the cathode. The extended catalyzed layer includes catalyst particles embedded in membrane material and preferably includes a first plurality of particles which are electrically connected to the at least one electrode. The extended catalyzed layer may further preferably have a second plurality of particles which are electrically disconnected from the at least one electrode.
Abstract:
A membrane electrode assembly includes an anode including a hydrogen oxidation catalyst; a cathode; a membrane disposed between the anode and the cathode; and a peroxide decomposition catalyst positioned in at least one position selected from the group consisting of the anode, the cathode, a layer between the anode and the membrane and a layer between the cathode and the membrane wherein the peroxide decomposition catalyst has selectivity when exposed to hydrogen peroxide toward reactions which form benign products from the hydrogen peroxide. The peroxide decomposition catalyst can also be positioned within the membrane. Also disclosed is a power-generating fuel cell system including such a membrane electrode assembly, and a process for operating such a fuel cell system.
Abstract:
A method and apparatus are provided for quantifying molybdate corrosion inhibitor concentrations in lithium halide brines of absorption refrigeration systems. This permits monitoring and control of the inhibitor level. A reagent is chosen for reacting with the molybdate in the brine to provide a readily identifiable characteristic color, the intensity of which is a function and measure of the molybdate concentration. The reagent is an acidified reducing agent which reacts to provide a significant characteristic color capable of optical detection without interference. In a lithium bromide brine, the molybdate concentration is conveniently identified by reaction with stannous chloride SnCl in hydrochloric acid Hcl (). The resulting color corresponds to a wavelength of about 550-560 nm (pink), and the intensity is a function of molybdate concentration. Portable measuring equipment, such as a hand held spectrophotometer, or colorimeter, provide a convenient means for making on-site measurements.
Abstract:
A method of imprinting a workpiece includes lasing the workpiece to create a depression or other opening, depositing a laser-fusible polymer material into the depression, and then lasing the material so as to fuse the material into the depression. Preferably, the laser-fusible polymer material is fusible in the near infrared spectrum. An alternate method for imprinting using colored powder paints includes an additional step of heating the workpiece to ensure thermosetting of the colored powder paint. Laser fusible materials having particular physical characteristics and compositions may be used to facilitate the process.
Abstract:
Ceramic particles useful as abrasives in a metal matrix layer are described. The particles are coated with an oxide monolayer and a metal duplex layer. Preferably, the particles are silicon carbide; the oxide monolayer is aluminum oxide, and the metal duplex layer is a nickel-boron alloy over pure nickel.