摘要:
A bus switch is protected from undershoots on either of its terminals. The bus switch transistor is an n-channel metal-oxide-semiconductor (MOS) with its source connected to a first bus and its drain connected to a second bus. During isolation, the gate node of the bus switch transistor is discharged to ground by a pulsed transistor, and then kept at ground by a leaker transistor. Sense-pulse circuits are attached to the first and second bus. When a low-going transition is detected by a sense-pulse circuit, an n-channel connecting transistor is turned on, connecting the bus with the low-going transition to the gate node through a grounded-gate n-channel transistor. If an undershoot occurs, it is coupled to the gate node. Since both the gate and source of the bus switch transistor are coupled to the undershoot, the gate-to-source voltage never reaches the transistor threshold and the bus switch transistor remains off. An external direction signal may also be used to pre-activate the connecting transistor for one of the two sides of the bus switch transistor, replacing the sense-pulse circuits.
摘要:
A fail-safe circuit for a pair of differential input lines detects when one or both lines are open. Each line has a pull-up of a switched p-channel transistor in series with a resistor or another p-channel transistor that has its effective resistance controlled by a gate bias. The gate of the switched p-channel transistor is driven to ground when power is applied to the gate of a grounding n-channel transistor. When power is off, a p-channel connecting transistor charges the gate node from the differential input line when a positive voltage is applied to the input line, such as during a leakage test. Charging the gate node prevents the switched p-channel transistor from turning on, blocking a leakage current path through the pull-up. An N-well bias circuit can be added, which connects the N-well under p-channel transistors to power or the gate node or the input line.
摘要:
A substrate bias generator has a ring oscillator disabled when a supply over-voltage condition is detected by a supply comparator, or when a target substrate voltage is reached. A substrate comparator compares the substrate voltage to a reference generated by a p-channel sense transistor that is independent of the substrate voltage. The substrate is sensed by an n-channel sense transistor with only its bulk connected to the substrate voltage. Current sources for the sense transistors and comparator are controlled by bias voltages generated by a voltage divider that switches from a high-power state to a low-power state once the substrate target is reached. Feedback turns off a high-current resistor, limiting current to that passing through a low-current resistor. The bias voltages are adjusted to reduce current to the sense transistors and comparator, reducing power. High current and power are used for fast sensing before the substrate target is reached.
摘要:
A clock driver chip has several banks of clock outputs driven by a single clock reference. Each clock output is driven by large pull-up and pull-down transistors, which have gates driven by pre-driver lines generated by a pre-driver circuit. Individual clock outputs, or a bank of outputs, are enabled by enable signals. A shorting switch is activated when enables for a pair of clock outputs are in a same state. The shorting switch has two transmission gates. One transmission gate shorts the pre-driver lines to the large p-channel transistors of the pair of outputs, while the other transmission gate shorts the pre-driver lines to the large n-channel transistors of the pair of outputs. Pre-driver lines to the pull-up transistors within a bank driven by the same enable can be hardwired together, as can the pre-driver lines to the pull-down transistors. Shorting switches can short banks together to reduce output skew.
摘要:
A differential amplifier has a boosted sink current that is turned on by a pulse generator when the output is driven low. This boosted sink current quickly lowers the output to the voltage-output-low VOL level. After the pulse ends, the sink current ends and power is reduced to a lower standby level. A differential pair of switches receives the true and complement data. One switch is closed when the data is true, connecting a current source that sets the standby voltage-output-high VOH level. The other switch is closed when the complement data is high, connecting another current source that sets the standby VOL level. A second differential amplifier with reversed true and complement data drives a complement output for a differential signaling transmitter, such as for a pseudo-emitter-coupled logic (PECL) driver.
摘要:
A power-up-reset circuit draws zero standby current. Rather than use a voltage divider that always draws current, a capacitive-pullup divider is used as the first stage. The capacitive-pullup divider has a capacitor to power (Vcc) and n-channel series transistors to ground. A sensing node between the capacitor and n-channel series transistors is initially pulled high to Vcc as Vcc is ramped up. The n-channel transistors remain off until Vcc reaches about 1.5 volts. Then the n-channel transistors pull the sensing node quickly to ground, ending the reset pulse. The second stage has a capacitor to ground that initially holds a threshold node low. A p-channel transistor has a gate connected to the sensing node and charges up the capacitor when the sensing node falls to ground. A third stage is triggered to change state as the capacitor is charged up by the p-channel transistor. Then a Schmidt trigger toggles, as do downstream inverter stages. A feedback signal goes low, disabling the gate of a pulldown n-channel transistor in the second stage. This disables a power-to-ground current path.
摘要:
An electro-static-discharge (ESD) protection circuit protects internal power supplies in a mixed-signal IC. An active protection circuit is used. The ESD-protection circuit uses standard transistors and is actively enabled and disabled by standard transistors. A standard thin-oxide NMOS transistor is the ESD switch (shunt) between power supply busses. This thin-oxide transistor ESD switch is actively enabled and disabled by a control circuit. NMOS transistors in the control circuit discharge the gate node of the ESD switch when the power supplies are powered up, thus actively disabling the ESD protection circuit. When an ESD pulse is applied to a supply when powered down, a capacitor couples the rapid voltage rise to the gate node. The rising voltage turns on the ESD switch, shunting the ESD pulse to the other supply. A resistor and a p-channel MOS transistor in series then discharge the gate node to the other supply. The capacitor, resistor, and p-channel transistor form an RC network. A second RC network is connected to the other supply so that symmetric protection is provided. Slow and unresponsive thick-oxide transistors and diodes are avoided.
摘要:
A CMOS output buffer has a first stage with smaller driver transistors and a second stage having larger driver transistors. Both stages drive the output in parallel during the first half of a voltage transition, but the larger, second stage is disabled during the second half of the output voltage swing. The output voltage is fed back to an isolation circuit by a pulse generator which is triggered by the output reaching the switching threshold. The pulse generated disables the larger driver for a short period of time but later re-enables the driver. Thus the large driver remains on after the switching is complete, providing large IOH and IOL static currents. The pulse is long enough to keep the large driver disabled while reflections are received and ringing occurs after the voltage transition. Resistors in the smaller first stage absorb these reflections. The output impedance is pulsed to the higher impedance of the first stage when ringing occurs at the end of the voltage transition, but after the pulse ends the lower impedance of the large driver is seen. Pulses are sent to neighboring output buffers and are OR'ed together to disable adjacent output buffer's large drivers when noise in injected into the power or ground supplies.
摘要:
An all-CMOS output buffer drives a bus that can operate at 3 volts and 5 volts. When in a high-impedance state, the output buffer draws little or no current. If the bus is driven to 5 volts by an external device, the high impedance output buffer is in danger of latch-up and distortion of the bus logic level since it only has a 3-volt power supply and does not use a charge pump or an extra 5-volt supply. A biasing circuit couples an N-well that contains p-channel transistors and a driver transistor to the bus driven to 5 volts. Thus the N-well is also driven to 5 volts, the voltage on the bus. The gate of the p-channel driver transistor in the high-impedance output buffer is also coupled to the N-well by another p-channel transistor, raising the gate potential to 5 volts. Thus the gate and body of the p-channel driver transistor is at 5 volts, eliminating reversing current and latch-up problems. A transmission gate isolates the gate of the p-channel driver transistor from the rest of the device's circuitry. The p-channel transistors of the transmission gate, bias circuitry, and driver transistor are located in the N-well, which is biased up to 5 volts only when necessary. Thus during normal operation, the N-well of the driver transistor is at 3 volts, eliminating a performance loss from the body effect. A logic gate increases the well bias and isolates the driver's gate only when necessary, when the bus is high and driven by a 5-volt device, and the output buffer is in high-impedance.
摘要:
Methods and apparatus are provided for designing and laying out multi-layer circuit substrates, such as multi-layer PCBs. Dynamic vias are provided on intermediate PCB layers. Each dynamic via has features that adjust based on the trace layout of the corresponding intermediate layer. In particular, each dynamic via has a second radius R2 if the via is not connected to any trace on the corresponding intermediate layer. If a trace is connected to a dynamic via, the via radius changes from the second radius R2 to a first radius R1, where R1 is greater than R2.