Abstract:
Systems and methods for managed access to tiered storage are disclosed. One such system comprises a plurality of storage systems and a tier manager. Each storage system implements a tier selected from the group of online and other than online. The tier manager is configured to ensure that a specified file is available on a specified tier, responsive to a client request.
Abstract:
An expandable coupling arrangement for coupling first and second tubulars includes a male thread portion on an end of the first tubular and a female thread portion on an end of the second tubular. The thread portions comprise dovetail threads having flanks, roots and crests, wherein the flanks are inclined at an angle of greater than 10°.
Abstract:
According to a particular embodiment, a method for assisting in a handoff is provided that includes receiving signaling from one or more access points, which may transmit information to a mobile station. The information may be used to execute a handoff from an enterprise network to a cellular network or from the cellular network to the enterprise network.
Abstract:
A technique for network planning that includes an interface for guiding a network user through the network allocation process, such as defining groups of clients based on their capabilities. Portions of the wireless local area network infrastructure, e.g., access points, are allocated among the groups. When a client attempts to associate with an access point, the access point determines the client capabilities. If the client is supported by the access point, the access point allows the client to associate and sends the client a message that contains a prioritized list of other nearby access points allocated to service that client, otherwise the access point sends a prioritized roaming list of nearby access points to the client that are allocated to serve that type of client. Feedback is provided by the network infrastructure enabling a network user or the network to automatically reallocate resources based on the feedback.
Abstract:
Interferometric apparatus and methods for reducing the effects of coherent artifacts in interferometers. Fringe contrast in interferograms is preserved while coherent artifacts that would otherwise be present in the interferogram because of coherent superposition of unwanted radiation generated in the interferometer are suppressed. Use is made of illumination and interferogrammetric imaging architectures that generate individual interferograms of the selected characteristics of a test surface from the perspective of different off-axis locations of illumination in an interferometer and then combine them to preserve fringe contrast while at the same time arranging for artifacts to exist at different field locations so that their contribution in the combined interferogram is diluted.
Abstract:
A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective transmission systems that adapt or can be adapted to the radio environment. Such systems are compatible with bandwidth-on-demand and higher-order modulation formats and use advanced adaptation algorithms. In a specific embodiment the spectral and spatial components of the adaptive weights are calculated in a unified operation based on the mathematical analogy between the spectral and spatial descriptions of the airlink.
Abstract:
Multiple Input Multiple Output (MIMO) technology in conjunction with the IEEE 802.11 standard enables simultaneous communication of data packets to or from multiple users in the same frequency. Spatial divisional multiple access (SDMA) is thus provided. In this way, system capacity can be increased to an extent that depends on available antenna resources and the multipath characteristics of the communication channel. Doubling or quadrupling of network throughput can be achieved.
Abstract:
In an example embodiment, there is disclosed a technique that enables a wireless device to achieve coexistence with an interfering source. The wireless device determines when interference is present and not present during a service period and reports the duration of interference free interval. At the end of an interference period, the wireless device can send a trigger signal indicating the start of an interference free interval to request data be sent to the wireless station until the expiration of the duration of the interference free interval. In particular embodiments, the signal sent by the wireless device can include an offset, for example a timing synchronization function (TSF) value, to indicate the end of the interference-free interval, perhaps computed so as allow for some clock drift.
Abstract:
Multiple Input Multiple Output (MIMO) technology in conjunction with the IEEE 802.11 standard enables simultaneous communication of data packets to or from multiple users in the same frequency. Spatial divisional multiple access (SDMA) is thus provided. In this way, system capacity can be increased to an extent that depends on available antenna resources and the multipath characteristics of the communication channel. Doubling or quadrupling of network throughput can be achieved.
Abstract:
Described in an example embodiment herein is a Mobility Service Engine (MSE) cluster comprising an MSE Cluster Master and at least one MSE Cluster Slave. The MSE Master is configured to define Network Service Segments. The MSE Master of the cluster distributes the Network Service Segments to slaves within the cluster. The network is configured to forward data to the correct Network Service Segment.