-
11.
公开(公告)号:US20180042558A1
公开(公告)日:2018-02-15
申请号:US15674442
申请日:2017-08-10
Applicant: DexCom, Inc.
Inventor: Esteban Cabrera, JR. , Lauren Danielle Armenta , Scott M. Belliveau , Jennifer Blackwell , Leif N. Bowman , Rian Draeger , Arturo Garcia , Timothy Joseph Goldsmith , John Michael Gray , Andrea Jean Jackson , Apurv Ullas Kamath , Katherine Yerre Koehler , Paul Kramer , Aditya Sagar Mandapaka , Michael Robert Mensinger , Sumitaka Mikami , Gary A. Morris , Hemant Mahendra Nirmal , Paul Noble-Campbell , Philip Thomas Pupa , Eli Reihman , Peter C. Simpson , Brian Christopher Smith , Atiim Joseph Wiley
IPC: A61B5/00 , G06F17/18 , G06F19/00 , G06F3/0488 , A61B5/145
CPC classification number: A61B5/7275 , A61B5/0022 , A61B5/14532 , A61B5/743 , A61B5/746 , G06F1/163 , G06F3/0484 , G06F3/04847 , G06F3/0488 , G06F16/00 , G06F17/18 , G06F19/326 , G16H15/00 , G16H40/63 , G16H40/67 , G16H50/20 , G16H50/30 , G16H70/40
Abstract: Disclosed are systems and methods for generating graphical displays of analyte data and/or health information. In some implementations, the graphical displays are generating based on a self-referential dataset that are modifiable based on identified portions of the data. The modified graphical displays can indicate features in the analyte data of a host.
-
公开(公告)号:US20220273204A1
公开(公告)日:2022-09-01
申请号:US17743786
申请日:2022-05-13
Applicant: Dexcom, Inc.
Inventor: Apurv Ullas Kamath , Margaret A. Crawford , John Michael Gray , Hari Hampapuram , Matthew Lawrence Johnson , Subrai Girish Pai , Shawn Clay Sanders , Sumitaka Mikami
Abstract: Various examples are directed to systems and methods for measuring a parameter related to patient health. An analyte sensor system may detect that the analyte sensor system has been applied to a host and may store analyte data describing the host. The analyte sensor system may determine that sensor use at the analyte sensor system has terminated and upload stored analyte data to an upload computing device.
-
13.
公开(公告)号:US20220000432A1
公开(公告)日:2022-01-06
申请号:US17448317
申请日:2021-09-21
Applicant: DexCom, Inc.
Inventor: Esteban Cabrera, JR. , Lauren Danielle Armenta , Scott M. Belliveau , Jennifer Blackwell , Leif N. Bowman , Rian Draeger , Arturo Garcia , Timothy Joseph Goldsmith , John Michael Gray , Andrea Jean Jackson , Apurv Ullas Kamath , Katherine Yerre Koehler , Paul Kramer , Aditya Sagar Mandapaka , Michael Robert Mensinger , Sumitaka Mikami , Gary A. Morris , Hemant Mahendra Nirmal , Paul Noble-Campbell , Philip Thomas Pupa , Eli Reihman , Peter C. Simpson , Brian Christopher Smith , Atiim Joseph Wiley
IPC: A61B5/00 , G06F1/16 , G06F3/0484 , G16H15/00 , G16H40/67 , G16H50/20 , G16H70/40 , G16H50/30 , G16H40/63 , A61B5/145 , G06F3/0488 , G06F17/18
Abstract: Disclosed are systems and methods for generating graphical displays of analyte data and/or health information. In some implementations, the graphical displays are generating based on a self-referential dataset that are modifiable based on identified portions of the data. The modified graphical displays can indicate features in the analyte data of a host.
-
公开(公告)号:US20210260288A1
公开(公告)日:2021-08-26
申请号:US17114190
申请日:2020-12-07
Applicant: DexCom, Inc.
Inventor: Apurv Ullas Kamath , Derek James Escobar , Sumitaka Mikami , Hari Hampapuram , Benjamin Elrod West , Nathanael Paul , Naresh C. Bhavaraju , Michael Robert Mensinger , Gary A. Morris , Andrew Attila Pal , Eli Reihman , Scott M. Belliveau , Katherine Yerre Koehler , Nicholas Polytaridis , Rian Draeger , Jorge Valdes , David Price , Peter C. Simpson , Edward Sweeney
Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
-
公开(公告)号:US20210259591A1
公开(公告)日:2021-08-26
申请号:US17114254
申请日:2020-12-07
Applicant: DexCom, Inc.
Inventor: Apurv Ullas Kamath , Derek James Escobar , Sumitaka Mikami , Hari Hampapuram , Benjamin Elrod West , Nathanael Paul , Naresh C. Bhavaraju , Michael Robert Mensinger , Gary A. Morris , Andrew Attila Pal , Eli Reihman , Scott M. Belliveau , Katherine Yerre Koehler , Nicholas Polytaridis , Rian Draeger , Jorge Valdes , David Price , Peter C. Simpson , Edward Sweeney
Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
-
公开(公告)号:US20180182491A1
公开(公告)日:2018-06-28
申请号:US15853493
申请日:2017-12-22
Applicant: DexCom, Inc.
Inventor: Scott M. Belliveau , Naresh C. Bhavaraju , Darin Edward Chum Dew , Eric Cohen , Anna Leigh Davis , Mark Dervaes , Laura J. Dunn , Minda McDorman Grucela , Hari Hampapuram , Matthew Lawrence Johnson , Apurv Ullas Kamath , Steven David King , Katherine Yerre Koehler , Aditya Sagar Mandapaka , Zebediah L. McDaniel , Sumitaka Mikami , Subrai Girish Pai , Philip Mansiel Pellouchoud , Stephen Alan Reichert , Eli Reihman , Peter C. Simpson , Brian Christopher Smith , Stephen J. Vanslyke , Robert Patrick Van Tassel , Matthew D. Wightlin , Richard C. Yang , James Stephen Amidei , David Derenzy , Benjamin Elrod West , Vincent Crabtree , Michael Levozier Moore , Douglas William Burnette , Alexandra Elena Constantin , Nicholas Polytaridis , Dana Charles Cambra , Abhishek Sharma , Kho Braun , Patrick Wile McBride
CPC classification number: G16H50/30 , A43B3/0005 , A61B5/0004 , A61B5/0031 , A61B5/14503 , A61B5/14532 , A61B5/4839 , A61M5/142 , A61M5/1723 , A61M2205/18 , A61M2205/3303 , A61M2205/3507 , A61M2205/3569 , A61M2205/3576 , G06Q2220/14 , G16H20/10 , G16H20/17 , G16H40/40 , G16H40/63 , G16H50/20 , G16H80/00 , H04L63/0428 , H04L63/06 , H04L63/0876 , H04L2209/80 , H04W4/38 , H04W4/80 , H04W12/02 , H04W12/04 , H04W12/06 , H04W52/0251 , Y02A90/26 , Y02D70/10 , Y02D70/1224 , Y02D70/1242 , Y02D70/1262 , Y02D70/14 , Y02D70/142 , Y02D70/144 , Y02D70/162 , Y02D70/164 , Y02D70/166 , Y02D70/20 , Y02D70/22 , Y02D70/26
Abstract: Systems and methods disclosed provide ways for Health Care Professionals (HCPs) to be involved in initial patient system set up so that the data received is truly transformative, such that the patient not just understands what all the various numbers mean but also how the data can be used. For example, in one implementation, a CGM device is configured for use by a HCP, and includes a housing and a circuit configured to receive a signal from a transmitter coupled to an indwelling glucose sensor. A calibration module converts the received signal into clinical units. A user interface is provided that is configured to display a measured glucose concentration in the clinical units. The user interface is further configured to receive input data about a patient level, where the input data about the patient level causes the device to operate in a mode appropriate to the patient level.
-
公开(公告)号:US11766194B2
公开(公告)日:2023-09-26
申请号:US16269480
申请日:2019-02-06
Applicant: DexCom, Inc.
Inventor: Alexandra Elena Constantin , Scott M. Belliveau , Naresh C. Bhavaraju , Jennifer Blackwell , Eric Cohen , Basab Dattaray , Anna Leigh Davis , Rian Draeger , Arturo Garcia , John Michael Gray , Hari Hampapuram , Nathaniel David Heintzman , Lauren Hruby Jepson , Matthew Lawrence Johnson , Apurv Ullas Kamath , Katherine Yerre Koehler , Phil Mayou , Patrick Wile McBride , Michael Robert Mensinger , Sumitaka Mikami , Andrew Attila Pal , Nicholas Polytaridis , Philip Thomas Pupa , Eli Reihman , Peter C. Simpson , Tomas C. Walker , Daniel Justin Wiedeback , Subrai Girish Pai , Matthew T. Vogel
IPC: A61B5/145 , G16H70/20 , A61B5/00 , G06N20/00 , G06N5/045 , A61B5/11 , A61B5/01 , A61B5/0205 , G16H50/20 , A61B5/024 , A61B5/08
CPC classification number: A61B5/14532 , A61B5/0022 , A61B5/01 , A61B5/02055 , A61B5/1118 , A61B5/486 , A61B5/4839 , A61B5/4866 , A61B5/7221 , A61B5/7275 , A61B5/7282 , A61B5/746 , A61B5/7475 , G06N5/045 , G06N20/00 , G16H70/20 , A61B5/024 , A61B5/0816 , G16H50/20
Abstract: Systems and methods are provided to provide guidance to a user regarding management of a physiologic condition such as diabetes. The determination may be based upon a patient glucose concentration level. The glucose concentration level may be provided to a stored model to determine a state. The guidance may be determined based at least in part on the determined state.
-
公开(公告)号:US11723560B2
公开(公告)日:2023-08-15
申请号:US16269533
申请日:2019-02-06
Applicant: DexCom, Inc.
Inventor: Alexandra Elena Constantin , Scott M. Belliveau , Naresh C. Bhavaraju , Jennifer Blackwell , Eric Cohen , Basab Dattaray , Anna Leigh Davis , Rian Draeger , Arturo Garcia , John Michael Gray , Hari Hampapuram , Nathaniel David Heintzman , Lauren Hruby Jepson , Matthew Lawrence Johnson , Apurv Ullas Kamath , Katherine Yerre Koehler , Phil Mayou , Patrick Wile McBride , Michael Robert Mensinger , Sumitaka Mikami , Andrew Attila Pal , Nicholas Polytaridis , Philip Thomas Pupa , Eli Reihman , Peter C. Simpson , Tomas C. Walker , Daniel Justin Wiedeback
IPC: A61B5/145 , G16H70/20 , A61B5/00 , G06N20/00 , G06N5/045 , A61B5/11 , A61B5/01 , A61B5/0205 , G16H50/20 , A61B5/024 , A61B5/08
CPC classification number: A61B5/14532 , A61B5/0022 , A61B5/01 , A61B5/02055 , A61B5/1118 , A61B5/486 , A61B5/4839 , A61B5/4866 , A61B5/7221 , A61B5/7275 , A61B5/7282 , A61B5/746 , A61B5/7475 , G06N5/045 , G06N20/00 , G16H70/20 , A61B5/024 , A61B5/0816 , G16H50/20
Abstract: Systems and methods are provided to provide guidance to a user regarding management of a physiologic condition such as diabetes. The determination may be based upon a patient glucose concentration data sensed by a glucose concentration sensor. A host state change associated with the host glucose concentration data may be determined. A guidance message based at least in part on the host state change may also be determined. The guidance message may be delivered through a user interface.
-
19.
公开(公告)号:US11154253B2
公开(公告)日:2021-10-26
申请号:US15674442
申请日:2017-08-10
Applicant: DexCom, Inc.
Inventor: Esteban Cabrera, Jr. , Lauren Danielle Armenta , Scott M. Belliveau , Jennifer Blackwell , Leif N. Bowman , Rian Draeger , Arturo Garcia , Timothy Joseph Goldsmith , John Michael Gray , Andrea Jean Jackson , Apurv Ullas Kamath , Katherine Yerre Koehler , Paul Kramer , Aditya Sagar Mandapaka , Michael Robert Mensinger , Sumitaka Mikami , Gary A. Morris , Hemant Mahendra Nirmal , Paul Noble-Campbell , Philip Thomas Pupa , Eli Reihman , Peter C. Simpson , Brian Christopher Smith , Atiim Joseph Wiley
IPC: A61B5/00 , G06F1/16 , G06F3/0484 , G16H15/00 , G16H40/67 , G16H50/20 , G16H70/40 , G16H50/30 , G16H40/63 , A61B5/145 , G06F3/0488 , G06F17/18 , G06F16/00
Abstract: Disclosed are systems and methods for generating graphical displays of analyte data and/or health information. In some implementations, the graphical displays are generating based on a self-referential dataset that are modifiable based on identified portions of the data. The modified graphical displays can indicate features in the analyte data of a host.
-
公开(公告)号:US20210260287A1
公开(公告)日:2021-08-26
申请号:US17114142
申请日:2020-12-07
Applicant: DexCom, Inc.
Inventor: Apurv Ullas Kamath , Derek James Escobar , Sumitaka Mikami , Hari Hampapuram , Benjamin Elrod West , Nathanael Paul , Naresh C. Bhavaraju , Michael Robert Mensinger , Gary A. Morris , Andrew Attila Pal , Eli Reihman , Scott M. Belliveau , Katherine Yerre Koehler , Nicholas Polytaridis , Rian Draeger , Jorge Valdes , David Price , Peter C. Simpson , Edward Sweeney
Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
-
-
-
-
-
-
-
-
-