Abstract:
Volume leveler controller and controlling method are disclosed. In one embodiment, A volume leveler controller includes an audio content classifier for identifying the content type of an audio signal in real time; and an adjusting unit for adjusting a volume leveler in a continuous manner based on the content type as identified. The adjusting unit may configured to positively correlate the dynamic gain of the volume leveler with informative content types of the audio signal, and negatively correlate the dynamic gain of the volume leveler with interfering content types of the audio signal.
Abstract:
The present document describes a method (600) for estimating source parameters of audio sources (101) from mix audio signals (102), with. The mix audio signals (102) comprise a plurality of frames. The mix audio signals (102) are representable as a mix audio matrix in a frequency domain and the audio sources (101) are representable as a source matrix in the frequency domain. The method (600) comprises updating (601) an un-mixing matrix (221) which is configured to provide an estimate of the source matrix from the mix audio matrix, based on a mixing matrix (225) which is configured to provide an estimate of the mix audio matrix from the source matrix. Furthermore, the method (600) comprises updating (602) the mixing matrix (225) based on the un-mixing matrix (221) and based on the mix audio signals (102). In addition, the method (600) comprises iterating (603) the updating steps (601, 602) until an overall convergence criteria is met.
Abstract:
Example embodiments disclosed herein relates to upmixing of audio signals. A method of upmixing an audio signal is described. The method includes decomposing the audio signal into a diffuse signal and a direct signal, generating an audio bed at least in part based on the diffuse signal, the audio bed including a height channel, extracting an audio object from the direct signal, estimating metadata of the audio object, the metadata including height information of the audio object; and rendering the audio bed and the audio object as an upmixed audio signal, wherein the audio bed is rendered to a predefined position and the audio object is rendered according to the metadata. Corresponding system and computer program product are described as well.
Abstract:
Example embodiments disclosed herein relate to source separation in audio content. A method for separating sources from audio content is disclosed, the audio content being of a multi-channel format based on a plurality of channels. The method comprises performing a component analysis on the audio content for each of the plurality of channels to generate a plurality of components, each of the plurality of components comprising a plurality of time-frequency tiles in full frequency band; generating at least one dominant source with at least one of the time-frequency tiles from the plurality of the components and separating the sources from the audio content by estimating spatial parameters and spectral parameters based on the dominant source. Corresponding system and computer program product are also disclosed.
Abstract:
A method of audio source separation from audio content is disclosed. The method includes determining a spatial parameter of an audio source based on a linear combination characteristic of the audio source and an orthogonality characteristic of two or more audio sources to be separated in the audio content. The method also includes separating the audio source from the audio content based on the spatial parameter. Corresponding system and computer program product are also disclosed.
Abstract:
Equalizer controller and controlling method are disclosed. In one embodiment, an equalizer controller includes an audio classifier for identifying the audio type of an audio signal in real time; and an adjusting unit for adjusting an equalizer in a continuous manner based on the confidence value of the audio type as identified.
Abstract:
Embodiments of the present invention relate to adaptive audio content generation. Specifically, a method for generating adaptive audio content is provided. The method comprises extracting at least one audio object from channel-based source audio content, and generating the adaptive audio content at least partially based on the at least one audio object. Corresponding system and computer program product are also disclosed.
Abstract:
Embodiments of the present invention relate to adaptive audio content generation. Specifically, a method for generating adaptive audio content is provided. The method comprises extracting at least one audio object from channel-based source audio content, and generating the adaptive audio content at least partially based on the at least one audio object. Corresponding system and computer program product are also disclosed.
Abstract:
The present document describes a method for extracting J audio sources from I audio channels. The method includes updating a Wiener filter matrix based on a mixing matrix from a source matrix and based on a power matrix of the J audio sources. Furthermore, the method includes updating a cross-covariance matrix of the I audio channels and of the J audio sources and an auto-covariance matrix of the J audio sources, based on the updated Wiener filter matrix and based on an auto-covariance matrix of the I audio channels. In addition, the method includes updating the mixing matrix and the power matrix based on the updated cross-covariance matrix of the I audio channels and of the J audio sources, and/or based on the updated auto-covariance matrix of the J audio sources.
Abstract:
Volume leveler controller and controlling method are disclosed. In one embodiment, A volume leveler controller includes an audio content classifier for identifying the content type of an audio signal in real time; and an adjusting unit for adjusting a volume leveler in a continuous manner based on the content type as identified. The adjusting unit may configured to positively correlate the dynamic gain of the volume leveler with informative content types of the audio signal, and negatively correlate the dynamic gain of the volume leveler with interfering content types of the audio signal.