摘要:
Carbon nanotubes grown on nanostructured flake substrates are disclosed. The nanostructured flake substrates include a catalyst support layer and at least one catalyst layer. Carbon nanotubes grown on the nanostructured flake substrates can have very high aspect ratios. Further, the carbon nanotubes can be aligned on the nanostructured flake substrates. Through routine optimization, the nanostructured flake substrates may be used to produce single-wall, double-wall, or multi-wall carbon nanotubes of various lengths and diameters. The nanostructured flake substrates produce very high yields of carbon nanotubes per unit weight of substrate. Methods for making the nanostructured flake substrates and for using the nanostructured flake substrates in carbon nanotube synthesis are disclosed.
摘要:
A new and useful nanotube growth substrate conditioning processes is herein disclosed that allows the growth of vertical arrays of carbon nanotubes where the average diameter of the nanotubes can be selected and/or controlled as compared to the prior art.
摘要:
The present invention involves fibers of highly aligned single-wall carbon nanotubes and a process for making the same. The present invention provides a method for effectively dispersing single-wall carbon nanotubes. The process for dispersing the single-wall carbon nanotubes comprises mixing single-wall carbon nanotubes with 100% sulfuric acid or a superacid, heating and stirring under an inert, oxygen-free environment. The single-wall carbon nanotube/acid mixture is wet spun into a coagulant to form the single-wall carbon nanotube fibers. The fibers are recovered, washed and dried. The single-wall carbon nanotubes were highly aligned in the fibers, as determined by Raman spectroscopy analysis.
摘要:
In some embodiments, the present disclosure pertains to methods of forming a reinforcing material by: (1) depositing a first material onto a catalyst surface; and (2) forming a second material on the catalyst surface, where the second material is derived from and associated with the first material. In some embodiments, the first material includes, without limitation, carbon nanotubes, graphene nanoribbons, boron nitride nanotubes, chalcogenide nanotubes, carbon onions, and combinations thereof. In some embodiments, the formed second material includes, without limitation, graphene, hexagonal boron nitride, chalcogenides, and combinations thereof. In additional embodiments, the methods of the present disclosure also include a step of separating the formed reinforcing material from the catalyst surface, and transferring the separated reinforcing material onto a substrate without the use of polymers. Additional embodiments of the present disclosure pertain to reinforcing materials formed by the aforementioned methods.
摘要:
A method for separating fractions of single-walled carbon nanotubes includes exposing a solution containing fractions of single-walled carbon nanotubes to a reducing agent and separating the resulting reaction products. An alternate method for separating fractions of single-walled carbon nanotubes includes exposing a solution containing fractions of single-walled carbon nanotubes to an oxidizing agent and separating the resulting reaction products. A third method for separating fractions of single-walled carbon nanotubes includes exposing a solution containing fractions of substantially non-functionalized single-walled carbon nanotubes to a charge transfer complex agent and separating the resulting reaction products. These methods allow the production of single-walled carbon nanotubes of approximately 95 to 99% metallic and semiconducting types.
摘要:
The present invention relates to processes for the purification of single-wall carbon nanotubes (SWNTs). Known methods of single-wall carbon nanotube production result in a single-wall carbon nanotube product that contains single-wall carbon nanotubes in addition to impurities including residual metal catalyst particles and amounts of small amorphous carbon sheets that surround the catalyst particles and appear on the side of the single-wall carbon nanotubes. The present purification processes remove the extraneous carbon as well as metal-containing residual catalyst particles.
摘要:
The present invention is generally directed to new liquid-liquid extraction methods for the length-based separation of carbon nanotubes (CNTs) and other 1-dimensional nanostructures. In some embodiments, such methods are directed to separating SWNTs on the basis of their length, wherein such methods comprise the steps of: (a) functionalizing SWNTs to form functionalized SWNTs with ionizable functional moieties; (b) dissolving said functionalized SWNTs in a polar solvent to form a polar phase; (c) dissolving a substoichiometric (relative to the amount of ionizable functional moieties present on the SWNTs) amount of a phase transfer agent in a non-polar solvent to form a non-polar phase; (d) combining the polar and non-polar phases to form a bi-phase mixture; (e) adding a cationic donor species to the bi-phase mixture; and (f) agitating the bi-phase mixture to effect the preferential transport of short SWNTs into the non-polar phase such that the non-polar phase is enriched in short SWNTs and the polar phase is enriched in longer SWNTs. In other embodiments, analogous methods are used for the length-based separation of any type of CNT, and more generally, for any type of 1-dimensional nanostructure.
摘要:
The present invention involves alewives of highly aligned single-wall carbon nanotubes (SWNT), process for making the same and compositions thereof. The present invention provides a method for effectively making carbon alewives, which are discrete, acicular-shaped aggregates of aligned single-wall carbon nanotubes and resemble the Atlantic fish of the same name. Single-wall carbon nanotube alewives can be conveniently dispersed in materials such as polymers, ceramics, metals, metal oxides and liquids. The process for preparing the alewives comprises mixing single-wall carbon nanotubes with 100% sulfuric acid or a superacid, heating and stirring, and slowly introducing water into the single-wall carbon nanotube/acid mixture to form the alewives. The alewives can be recovered, washed and dried. The properties of the single-wall carbon nanotubes are retained in the alewives.
摘要:
The present invention is directed to a method of producing diamond films through the thermal dissociation of molecular chlorine into atomic chlorine in a heated graphite heat exchanger at temperatures of from about 1,100.degree. C. to about 1,800.degree. C. The atomic chlorine is subsequently rapidly mixed with molecular hydrogen and carbon-containing species downstream. Atomic hydrogen and the carbon precursors are produced through rapid hydrogen abstraction reactions of atomic chlorine with molecular hydrogen and hydrocarbons at the point where they mix. The mixed gases then flow across a heated substrate, where diamond is deposited as a film. Diamond deposits have been confirmed by Raman spectroscopy.
摘要:
In some embodiments, the present disclosure pertains to methods of forming a reinforcing material by: (1) depositing a first material onto a catalyst surface; and (2) forming a second material on the catalyst surface, where the second material is derived from and associated with the first material. In some embodiments, the first material includes, without limitation, carbon nanotubes, graphene nanoribbons, boron nitride nanotubes, chalcogenide nanotubes, carbon onions, and combinations thereof. In some embodiments, the formed second material includes, without limitation, graphene, hexagonal boron nitride, chalcogenides, and combinations thereof. In additional embodiments, the methods of the present disclosure also include a step of separating the formed reinforcing material from the catalyst surface, and transferring the separated reinforcing material onto a substrate without the use of polymers. Additional embodiments of the present disclosure pertain to reinforcing materials formed by the aforementioned methods.