Abstract:
Described embodiments include a portable electronic device. The device includes a shell housing components of the portable electronic device having a heat-generating component. The device includes a heat-rejection element located at an exterior surface of the shell. The heat-rejection element is configured to reject heat received from the heat-generating component into an environment in thermal contact with the heat-rejection element. The device includes a controllable thermal coupler configured to regulate heat transfer to the heat-rejection element. The device includes a proximity sensor configured to determine a location of a user touch to the shell relative to the location of the heat-rejection element. The device includes a thermal manager configured to regulate heat transfer by the controllable thermal coupler to the heat-rejection element in response to the determined location of the user touch relative to the location of the heat-rejection element.
Abstract:
The present disclosure provides systems and methods for storing, reading, and writing data using particle-based acoustic wave driven shift registers. The shift registers may physically shift particles along rows and/or columns of wells through the interactions of two parallel surfaces. A transducer may generate an acoustic wave to displace one or more of the two parallel surfaces. The particles may be transferred to and/or otherwise constrained by a buffer surface during at least a portion of the acoustic wave, such that the particles may be shifted during one or more cycles of the acoustic wave. In various embodiments, the amplitude of the acoustic wave may correspond to the spacing distance between each of the wells. The wells may be physical and/or potential wells.
Abstract:
The present disclosure provides systems and methods for storing, reading, and writing data using particle-based acoustic wave driven shift registers. The shift registers may physically shift particles along rows and/or columns of wells through the interactions of two parallel surfaces. A transducer may generate an acoustic wave to displace one or more of the two parallel surfaces. The particles may be transferred to and/or otherwise constrained by a buffer surface during at least a portion of the acoustic wave, such that the particles may be shifted during one or more cycles of the acoustic wave. In various embodiments, the amplitude of the acoustic wave may correspond to the spacing distance between each of the wells. The wells may be physical and/or potential wells.
Abstract:
The present disclosure provides systems and methods for storing, reading, and writing data using particle-based acoustic wave driven shift registers. The shift registers may physically shift particles along rows and/or columns of wells through the interactions of two parallel surfaces. A transducer may generate an acoustic wave to displace one or more of the two parallel surfaces. The particles may be transferred to and/or otherwise constrained by a buffer surface during at least a portion of the acoustic wave, such that the particles may be shifted during one or more cycles of the acoustic wave. In various embodiments, the amplitude of the acoustic wave may correspond to the spacing distance between each of the wells. The wells may be physical and/or potential wells.
Abstract:
Described embodiments include a portable electronic device. The device includes a shell housing components of the portable electronic device having a heat-generating component. The device includes a heat-rejection element located at an exterior surface of the shell. The heat-rejection element is configured to reject heat received from the heat-generating component into an environment in thermal contact with the heat-rejection element. The device includes a controllable thermal coupler configured to regulate heat transfer to the heat-rejection element. The device includes an activity monitor configured to infer a user touch to the shell in response to a detected activity of the portable electronic device. The device includes a thermal manager configured to regulate heat transfer by the controllable thermal coupler to the heat-rejection element in response to the inferred user touch.
Abstract:
Described embodiments include a portable electronic device. The device includes a shell housing components of the portable electronic device having a heat-generating component. The device includes a heat-rejection element located at an exterior surface of the shell. The heat-rejection element is configured to reject heat received from the heat-generating component into an environment in thermal contact with the heat-rejection element. The device includes a controllable thermal coupler configured to regulate heat transfer to the heat-rejection element. The device includes an activity monitor configured to infer a user touch to the shell in response to a detected activity of the portable electronic device. The device includes a thermal manager configured to regulate heat transfer by the controllable thermal coupler to the heat-rejection element in response to the inferred user touch.
Abstract:
Described embodiments include a portable electronic device. The device includes a shell and a heat-generating component. The device includes a first and a second exterior heat-rejection element. Each heat-rejection element is configured to reject heat received from the heat-generating component into an environment. The device includes a controllable thermal coupler configured to regulate heat transfer to the first and second heat-rejection elements. The device includes a first proximity sensor configured to determine if a user touch to the shell is within a first zone of possible heat discomfort. The device includes a thermal manager configured to regulate heat transfer by the controllable thermal coupler to the first and second heat-rejection elements. The regulated heat transfer includes adjusting heat rejection away from the first heat-rejection element and toward the second heat-rejection element if the user touch is within the first zone.
Abstract:
Structures and protocols are presented for signaling a status or decision concerning a wireless service or device within a region to a network participant or other communication device (smartphone or motor vehicle, e.g.).
Abstract:
The present disclosure provides systems and methods for storing, reading, and writing data using particle-based acoustic wave driven shift registers. The shift registers may physically shift particles along rows and/or columns of wells through the interactions of two parallel surfaces. A transducer may generate an acoustic wave to displace one or more of the two parallel surfaces. The particles may be transferred to and/or otherwise constrained by a buffer surface during at least a portion of the acoustic wave, such that the particles may be shifted during one or more cycles of the acoustic wave. In various embodiments, the amplitude of the acoustic wave may correspond to the spacing distance between each of the wells. The wells may be physical and/or potential wells.
Abstract:
Described embodiments include a portable electronic device. The device includes a shell housing components of the portable electronic device having a heat-generating component. The device includes a heat-rejection element located at an exterior surface of the shell. The heat-rejection element is configured to reject heat received from the heat-generating component into an environment in thermal contact with the heat-rejection element. The device includes a controllable thermal coupler configured to regulate heat transfer to the heat-rejection element. The device includes a proximity sensor configured to determine a location of a user touch to the shell relative to the location of the heat-rejection element. The device includes a thermal manager configured to regulate heat transfer by the controllable thermal coupler to the heat-rejection element in response to the determined location of the user touch relative to the location of the heat-rejection element.