Method for reset and stabilization control of a magnetic sensor

    公开(公告)号:US09766301B2

    公开(公告)日:2017-09-19

    申请号:US14953572

    申请日:2015-11-30

    CPC classification number: G01R33/0029 G01R33/0041 G01R33/04 G01R33/098

    Abstract: A magnitude and direction of at least one of a reset current and a second stabilization current (that produces a reset field and a second stabilization field, respectively) is determined that, when applied to an array of magnetic sense elements, minimizes the total required stabilization field and reset field during the operation of the magnetic sensor and the measurement of the external field. Therefore, the low field sensor operates optimally (with the highest sensitivity and the lowest power consumption) around the fixed external field operating point. The fixed external field is created by other components in the sensor device housing (such as speaker magnets) which have a high but static field with respect to the low (earth's) magnetic field that describes orientation information.

    Three axis magnetic field sensor
    12.
    再颁专利

    公开(公告)号:USRE46428E1

    公开(公告)日:2017-06-06

    申请号:US15165600

    申请日:2016-05-26

    CPC classification number: H01L27/22 B82Y25/00 G01R33/093 H01L43/08

    Abstract: Three bridge circuits (101, 111, 121), each include magnetoresistive sensors coupled as a Wheatstone bridge (100) to sense a magnetic field (160) in three orthogonal directions (110, 120, 130) that are set with a single pinning material deposition and bulk wafer setting procedure. One of the three bridge circuits (121) includes a first magnetoresistive sensor (141) comprising a first sensing element (122) disposed on a pinned layer (126), the first sensing element (122) having first and second edges and first and second sides, and a first flux guide (132) disposed non-parallel to the first side of the substrate and having an end that is proximate to the first edge and on the first side of the first sensing element (122). An optional second flux guide (136) may be disposed non-parallel to the first side of the substrate and having an end that is proximate to the second edge and the second side of the first sensing element (122).

    Three axis magnetic field sensor
    13.
    再颁专利

    公开(公告)号:USRE46180E1

    公开(公告)日:2016-10-18

    申请号:US14638583

    申请日:2015-03-04

    CPC classification number: H01L27/22 B82Y25/00 G01R33/093 H01L43/08

    Abstract: Three bridge circuits (101, 111, 121), each include magnetoresistive sensors coupled as a Wheatstone bridge (100) to sense a magnetic field (160) in three orthogonal directions (110, 120, 130) that are set with a single pinning material deposition and bulk wafer setting procedure. One of the three bridge circuits (121) includes a first magnetoresistive sensor (141) comprising a first sensing element (122) disposed on a pinned layer (126), the first sensing element (122) having first and second edges and first and second sides, and a first flux guide (132) disposed non-parallel to the first side of the substrate and having an end that is proximate to the first edge and on the first side of the first sensing element (122). An optional second flux guide (136) may be disposed non-parallel to the first side of the substrate and having an end that is proximate to the second edge and the second side of the first sensing element (122).

    Fabrication process and layout for magnetic sensor arrays
    14.
    发明授权
    Fabrication process and layout for magnetic sensor arrays 有权
    磁传感器阵列的制造工艺和布局

    公开(公告)号:US09276200B2

    公开(公告)日:2016-03-01

    申请号:US14521213

    申请日:2014-10-22

    CPC classification number: H01L43/02 G01R33/098 H01L27/22 H01L43/08 H01L43/12

    Abstract: A magnetic sensor includes a plurality of groups, each group comprising a plurality of magnetic tunnel junction (MTJ) devices having a plurality of conductors configured to couple the MTJ devices within one group in parallel and the groups in series enabling independent optimization of the material resistance area (RA) of the MTJ and setting total device resistance so that the total bridge resistance is not so high that Johnson noise becomes a signal limiting concern, and yet not so low that CMOS elements may diminish the read signal. Alternatively, the magnetic tunnel junction devices within each of at least two groups in series and the at least two groups in parallel resulting in the individual configuration of the electrical connection path and the magnetic reference direction of the reference layer, leading to independent optimization of both functions, and more freedom in device design and layout. The X and Y pitch of the sense elements are arranged such that the line segment that stabilizes, for example, the right side of one sense element; also stabilizes the left side of the adjacent sense element.

    Abstract translation: 磁传感器包括多个组,每个组包括多个磁隧道结(MTJ)装置,其具有多个导体,其被配置成并联连接一组内的MTJ装置,并且该组可串联实现材料电阻的独立优化 面积(RA),并设置总的器件电阻,使得总的桥接电阻不是很高,以至于Johnson噪声成为限制信号的关键,而不是那么低,使得CMOS元件可能会削弱读取信号。 或者,串联的至少两组中的每一个中的磁隧道结装置和并联的至少两个组,导致电连接路径的单独配置和参考层的磁参考方向,导致两者的独立优化 功能,以及更多设备设计和布局自由。 感测元件的X和Y间距被布置成使得例如稳定一个感测元件的右侧的线段; 也稳定了相邻感测元件的左侧。

    TWO-AXIS MAGNETIC FIELD SENSOR HAVING REDUCED COMPENSATION ANGLE FOR ZERO OFFSET
    17.
    发明申请
    TWO-AXIS MAGNETIC FIELD SENSOR HAVING REDUCED COMPENSATION ANGLE FOR ZERO OFFSET 有权
    具有减速补偿角度的双轴磁场传感器用于零偏移

    公开(公告)号:US20140159179A1

    公开(公告)日:2014-06-12

    申请号:US14168095

    申请日:2014-01-30

    CPC classification number: H01L43/10 G01R33/098 H01L43/12 Y10T29/49117

    Abstract: A sensor and fabrication process are provided for forming reference layers with substantially orthogonal magnetization directions having zero offset with a small compensation angle. An exemplary embodiment includes a sensor layer stack of a magnetoresistive thin-film based magnetic field sensor, the sensor layer stack comprising a pinning layer; a pinned layer including a layer of amorphous material over the pinning layer, and a first layer of crystalline material over the layer of amorphous material; a nonmagnetic coupling layer over the pinned layer; a fixed layer over the nonmagnetic coupling layer; a tunnel barrier over the fixed layer; and a sense layer over the nonmagnetic intermediate layer. Another embodiment includes a sensor layer stack where a pinned layer including two crystalline layers separated by a amorphous layer.

    Abstract translation: 提供传感器和制造工艺,用于形成具有基本上正交的磁化方向的参考层,具有零偏移并具有小的补偿角。 示例性实施例包括基于磁阻薄膜的磁场传感器的传感器层堆叠,传感器层堆叠包括钉扎层; 包括在钉扎层上的无定形材料层的钉扎层和在非晶材料层上的第一层结晶材料; 在被钉扎层上的非磁性耦合层; 在非磁耦合层上的固定层; 固定层上的隧道势垒; 以及在非磁性中间层上的感测层。 另一个实施例包括传感器层堆叠,其中包括由非晶层隔开的两个结晶层的钉扎层。

    Two-axis magnetic field sensor having reduced compensation angle for zero offset
    18.
    发明授权
    Two-axis magnetic field sensor having reduced compensation angle for zero offset 有权
    两轴磁场传感器具有减小零偏移的补偿角

    公开(公告)号:US08647891B2

    公开(公告)日:2014-02-11

    申请号:US13909622

    申请日:2013-06-04

    CPC classification number: H01L43/10 G01R33/098 H01L43/12 Y10T29/49117

    Abstract: A sensor and fabrication process are provided for forming reference layers with substantially orthogonal magnetization directions having zero offset with a small compensation angle. An exemplary embodiment includes a sensor layer stack of a magnetoresistive thin-film based magnetic field sensor, the sensor layer stack comprising a pinning layer; a pinned layer including a layer of amorphous material over the pinning layer, and a first layer of crystalline material over the layer of amorphous material; a nonmagnetic coupling layer over the pinned layer; a fixed layer over the nonmagnetic coupling layer; a tunnel barrier over the fixed layer; and a sense layer over the nonmagnetic intermediate layer. Another embodiment includes a sensor layer stack where a pinned layer including two crystalline layers separated by a amorphous layer.

    Abstract translation: 提供传感器和制造工艺,用于形成具有基本上正交的磁化方向的参考层,具有零偏移并具有小的补偿角。 示例性实施例包括基于磁阻薄膜的磁场传感器的传感器层堆叠,传感器层堆叠包括钉扎层; 包括在钉扎层上的无定形材料层的钉扎层和在非晶材料层上的第一层结晶材料; 在被钉扎层上的非磁性耦合层; 在非磁耦合层上的固定层; 固定层上的隧道势垒; 以及在非磁性中间层上的感测层。 另一个实施例包括传感器层堆叠,其中包括由非晶层隔开的两个结晶层的钉扎层。

    Magnetic field sensor
    20.
    发明授权

    公开(公告)号:US09640753B2

    公开(公告)日:2017-05-02

    申请号:US14168095

    申请日:2014-01-30

    CPC classification number: H01L43/10 G01R33/098 H01L43/12 Y10T29/49117

    Abstract: A sensor and fabrication process are provided for forming reference layers with substantially orthogonal magnetization directions having zero offset with a small compensation angle. An exemplary embodiment includes a sensor layer stack of a magnetoresistive thin-film based magnetic field sensor, the sensor layer stack comprising a pinning layer; a pinned layer including a layer of amorphous material over the pinning layer, and a first layer of crystalline material over the layer of amorphous material; a nonmagnetic coupling layer over the pinned layer; a fixed layer over the nonmagnetic coupling layer; a tunnel barrier over the fixed layer; and a sense layer over the nonmagnetic intermediate layer. Another embodiment includes a sensor layer stack where a pinned layer including two crystalline layers separated by a amorphous layer.

Patent Agency Ranking